Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116819 by joki last updated on 07/Oct/20

prove the limit  lim_(x−⟩2) (√(2x))=2

provethelimitlimx22x=2

Answered by 1549442205PVT last updated on 07/Oct/20

Suppose 0<ε<2 be arbitrary small numer  so that∣(√(2x))−2∣<ε⇔−ε+2<(√(2x))<ε+2  ⇔ε^2 −4ε+4<2x<ε^2 +4ε+4  ⇔((ε^2 −4ε+4)/2)<x<((ε^2 +4ε+4)/2)  ⇔((ε^2 −4ε)/2)<x−2<((ε^2 +4ε)/2).Then choosing  δ=((4ε−ε^2 )/(2 )) we need prove that ∀x so that  ∣x−2∣<δ=((4ε−ε^2 )/2) then∣(√(2x))−2∣<ε.Ineed,  ∣x−2∣<δ=((4ε−ε^2 )/2) ⇔−δ+2<x<2+δ  ⇔−2δ+4<2x<4+2δ  ⇒ε^2 −4ε+4<2x<4ε−ε^2 +4<4+4ε+ε^2   ⇒2−ε<(√(2x))<ε+2⇒∣(√(2x−2))∣<ε  That shows lim_(x→2) (√(2x))=2(Q.E.D)

Suppose0<ϵ<2bearbitrarysmallnumersothat2x2∣<ϵϵ+2<2x<ϵ+2ϵ24ϵ+4<2x<ϵ2+4ϵ+4ϵ24ϵ+42<x<ϵ2+4ϵ+42ϵ24ϵ2<x2<ϵ2+4ϵ2.Thenchoosingδ=4ϵϵ22weneedprovethatxsothatx2∣<δ=4ϵϵ22then2x2∣<ϵ.Ineed,x2∣<δ=4ϵϵ22δ+2<x<2+δ2δ+4<2x<4+2δϵ24ϵ+4<2x<4ϵϵ2+4<4+4ϵ+ϵ22ϵ<2x<ϵ+2⇒∣2x2∣<ϵThatshowslimx22x=2(Q.E.D)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com