Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 116822 by bemath last updated on 07/Oct/20

 what the value of (√i) =?

$$\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:=? \\ $$

Commented by Dwaipayan Shikari last updated on 07/Oct/20

(√i)=((√((2i)/2)))=(1/( (√2)))(√((1+2i+i^2 )))=±(1/( (√2)))(1+i)

$$\sqrt{{i}}=\left(\sqrt{\frac{\mathrm{2}{i}}{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\left(\mathrm{1}+\mathrm{2}{i}+{i}^{\mathrm{2}} \right)}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$

Answered by floor(10²Eta[1]) last updated on 07/Oct/20

(√i)=(√e^((iπ)/2) )=e^((iπ)/4) =cos((π/4))+isin((π/4))  =((√2)/2)(1+i)  another solution:  (√i)=a+bi  i=a^2 −b^2 +2abi  ⇒a^2 −b^2 =0, 2abi=i  ⇒a^2 =b^2   ⇒ab=(1/2)∴a^2 b^2 =(1/4)  a^4 =(1/4)⇒a=((√2)/2)=b  ⇒(√i)=((√2)/2)(1+i)

$$\sqrt{\mathrm{i}}=\sqrt{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} }=\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} =\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$\mathrm{another}\:\mathrm{solution}: \\ $$$$\sqrt{\mathrm{i}}=\mathrm{a}+\mathrm{bi} \\ $$$$\mathrm{i}=\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\mathrm{2abi} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{0},\:\mathrm{2abi}=\mathrm{i} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{ab}=\frac{\mathrm{1}}{\mathrm{2}}\therefore\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{a}^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\mathrm{a}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\mathrm{b} \\ $$$$\Rightarrow\sqrt{\mathrm{i}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$ \\ $$

Commented by bemath last updated on 07/Oct/20

gave kudos

$$\mathrm{gave}\:\mathrm{kudos} \\ $$

Answered by 1549442205PVT last updated on 07/Oct/20

i=cos((π/2)+2kπ)+isin((π/2)+2kπ)=e^(i((π/2)+2kπ)) ⇒(√i)=(i)^(1/2) =e^(i((π/4)+kπ)) (k=0,1)  =cos((π/4)+kπ)+isin((π/4)+kπ) (k=0,1)  i)k=0⇒(√i)=((√2)/2)(1+i)  ii)k=1⇒(√i)=−((√2)/4)(1+i)

$$\mathrm{i}=\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)=\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)} \Rightarrow\sqrt{\mathrm{i}}=\left(\mathrm{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)} \left(\mathrm{k}=\mathrm{0},\mathrm{1}\right) \\ $$$$=\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)\:\left(\mathrm{k}=\mathrm{0},\mathrm{1}\right) \\ $$$$\left.\mathrm{i}\right)\mathrm{k}=\mathrm{0}\Rightarrow\sqrt{\mathrm{i}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{k}=\mathrm{1}\Rightarrow\sqrt{\mathrm{i}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$

Commented by bemath last updated on 07/Oct/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by 1549442205PVT last updated on 07/Oct/20

Thank Sir.You are welcome

$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by malwaan last updated on 07/Oct/20

(√i) = (√(((1/(√2)))^2 + i + ((i/(√2)))^2 ))   = (√(((1/(√2)) + (i/(√2)))^2 ))   = ± ((1/(√2)) + (i/(√2))) = (1/(√2))(1+i)  =±((√2)/2)(1+i)  another method  i=[1 ; (π/2)]  ⇒(√i) = [(√1) ; (((π/2) +2kπ)/2)] ; k=0 ; 1  k=0⇒[1 ; (π/4)]=cos(π/4) + isin(π/4)   = ((√2)/2) + i((√2)/2) = ((√2)/2)(1+i)  k=1⇒[1 ; ((5π)/4)]=cos((5π)/4)+isin((5π)/4)  = − ((√2)/2) − i((√2)/2) = − ((√2)/2)(1+i)  ∴ (√i) = ±((√2)/2)(1+i)

$$\sqrt{{i}}\:=\:\sqrt{\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\:{i}\:+\:\left(\frac{{i}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} } \\ $$$$\:=\:\sqrt{\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\:\frac{{i}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }\: \\ $$$$=\:\pm\:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\:\frac{{i}}{\sqrt{\mathrm{2}}}\right)\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$$$=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$${another}\:{method} \\ $$$${i}=\left[\mathrm{1}\:;\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow\sqrt{{i}}\:=\:\left[\sqrt{\mathrm{1}}\:;\:\frac{\frac{\pi}{\mathrm{2}}\:+\mathrm{2}{k}\pi}{\mathrm{2}}\right]\:;\:{k}=\mathrm{0}\:;\:\mathrm{1} \\ $$$${k}=\mathrm{0}\Rightarrow\left[\mathrm{1}\:;\:\frac{\pi}{\mathrm{4}}\right]={cos}\frac{\pi}{\mathrm{4}}\:+\:{isin}\frac{\pi}{\mathrm{4}} \\ $$$$\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$${k}=\mathrm{1}\Rightarrow\left[\mathrm{1}\:;\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right]={cos}\frac{\mathrm{5}\pi}{\mathrm{4}}+{isin}\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$$$=\:−\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\:{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:−\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$$\therefore\:\sqrt{{i}}\:=\:\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$

Commented by bemath last updated on 07/Oct/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com