Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 116854 by mnjuly1970 last updated on 07/Oct/20

   ...   calculus   elementary  algebra ...         please solve ::    ((6x+9))^(1/3)  +((7−7x))^(1/3)  +((x−8))^(1/3)  =2              ...m.n.july.1970...

...calculuselementaryalgebra...pleasesolve::6x+93+77x3+x83=2...m.n.july.1970...

Answered by MJS_new last updated on 07/Oct/20

easier than it seems  ((6x+9))^(1/3) +((x−8))^(1/3) =2+((7x−7))^(1/3)   let t=((7x−7))^(1/3)  ⇔ x=((t^3 +7)/7)  ((((6t^3 +105))^(1/3) +((t^3 −49))^(1/3) )/( (7)^(1/3) ))=t+2  (((6t^3 +105))^(1/3) +((t^3 −49))^(1/3) )^3 =7(t+2)^3   using (a+b)^3 =a^3 +b^3 +3ab(a+b) we get  3(7)^(1/3) (((6t^3 +105))^(1/3) ×((t^3 −49))^(1/3) )(t+2)=42t(t+2)  ⇒ t_1 =−2 ⇒ x_1 =−1/7  the rest^3  leads to  t^6 −((581)/6)t^3 −((1715)/2)=0  t=((7x−7))^(1/3)   49x^2 −((4655)/6)x−((392)/3)=0  ⇒ x_2 =−1/6∧x_3 =16

easierthanitseems6x+93+x83=2+7x73lett=7x73x=t3+776t3+1053+t349373=t+2(6t3+1053+t3493)3=7(t+2)3using(a+b)3=a3+b3+3ab(a+b)weget373(6t3+1053×t3493)(t+2)=42t(t+2)t1=2x1=1/7therest3leadstot65816t317152=0t=7x7349x246556x3923=0x2=1/6x3=16

Commented by bemath last updated on 07/Oct/20

greatt

greatt

Commented by mnjuly1970 last updated on 07/Oct/20

thank you  mr m.j.s...

thankyoumrm.j.s...

Answered by TANMAY PANACEA last updated on 07/Oct/20

a^3 =6x+9   b^3 =7−7x   c^3 =x−8  a^3 +b^3 +c^3 =8=2^3   a+b+c=(a^3 +b^3 +c^3 )^(1/3)   (a+b)^3 +3(a+b)^2 c+3(a+b)c^2 +c^3 =a^3 +b^3 +c^3   3ab(a+b)+3(a+b)c(a+b+c)=0  3(a+b)(ab+ac+bc+c^2 )=0  3(a+b){a(b+c)+c(b+c)}=0  (a+b)(b+c)(a+c)=0  when a+b=0  a^3 =−b^3   6x+9=−(7−7x)  6x−7x=−16   x=16  when b+c=0  b^3 =−c^3   7−7x=−x+8  −6x=1   x=((−1)/6)  when a+c=0  a^3 =−c^3   6x+9=−x+8  7x=−1  x=((−1)/7)  x=16,((−1)/6) and ((−1)/7)

a3=6x+9b3=77xc3=x8a3+b3+c3=8=23a+b+c=(a3+b3+c3)13(a+b)3+3(a+b)2c+3(a+b)c2+c3=a3+b3+c33ab(a+b)+3(a+b)c(a+b+c)=03(a+b)(ab+ac+bc+c2)=03(a+b){a(b+c)+c(b+c)}=0(a+b)(b+c)(a+c)=0whena+b=0a3=b36x+9=(77x)6x7x=16x=16whenb+c=0b3=c377x=x+86x=1x=16whena+c=0a3=c36x+9=x+87x=1x=17x=16,16and17

Commented by mnjuly1970 last updated on 07/Oct/20

thank you so much mr  tanmay..

thankyousomuchmrtanmay..

Commented by TANMAY PANACEA last updated on 07/Oct/20

most welcome sir

mostwelcomesir

Answered by 1549442205PVT last updated on 07/Oct/20

Put a=((6x+9))^(1/3)  ,b=((7−7x))^(1/3)  ,c=((x−8))^(1/3)   We have a^3 +b^3 +c^3 =8,a+b+c=2  Hence,applying the identity :  a^3 +b^3 +c^3 =(a+b+c)^3 −3(a+b)(b+c)(c+a)  we get:8=8−3(a+b)(b+c)(c+a)  ⇒(a+b)(a+c)(b+c)=0  i)a+b=0⇔^3 (√(6x+9))=−^3 (√(7−7x))  ⇔6x+9=−(7−7x)⇔x=16  ii)a+c=0⇔^3 (√(6x+9))=−^3 (√(x−8))  ⇔6x+9=−(x−8)⇔x=−1/7  iii)b+c=0⇔^3 (√(7−7x))=−^3 (√(x−8))  ⇔7−7x=−(x−8)⇔x=−1/6  Thus,the given equation has three  roots:       x∈{16,−1/7;−1/6}

Puta=6x+93,b=77x3,c=x83Wehavea3+b3+c3=8,a+b+c=2Hence,applyingtheidentity:a3+b3+c3=(a+b+c)33(a+b)(b+c)(c+a)weget:8=83(a+b)(b+c)(c+a)(a+b)(a+c)(b+c)=0i)a+b=036x+9=377x6x+9=(77x)x=16ii)a+c=036x+9=3x86x+9=(x8)x=1/7iii)b+c=0377x=3x877x=(x8)x=1/6Thus,thegivenequationhasthreeroots:x{16,1/7;1/6}

Commented by mnjuly1970 last updated on 07/Oct/20

very nice ...

verynice...

Commented by 1549442205PVT last updated on 31/Oct/20

You are welcome

Youarewelcome

Answered by mnjuly1970 last updated on 08/Oct/20

we know that :  a+b+c=0 ⇒a^3 +b^3 +c^3 =3abc  a=((6x+9))^(1/3)  , b=((7−7x))^(1/3)  ,c=((x−8))^(1/3)  −2   6x+9+7−7x+x−8−8−6(((x−8)^2 ))^(1/3)  +12((x−8))^(1/3)   =3(((6x+9))^(1/3)  )(((7−7x))^(1/3)  )(((x−8))^(1/3)  −2)  −6((x−8))^(1/3)  (((x−8))^(1/3)  −2)=3(((6x+9) ))^(1/3)  .(((7−7x)))^(1/3)  .(((x−8))^(1/3)  −2)  x=16    −8(x−8)=(6x+9)(7−7x)  −8x+64=42x−42x^2 −63x+63  42x^2 +13x+1=0  Δ=169−168=1  x=((−13+_− 1)/(84))=((−14)/(84))=((−1)/6)   , ((−1)/7)           ...  m.n.1970...

weknowthat:a+b+c=0a3+b3+c3=3abca=6x+93,b=77x3,c=x8326x+9+77x+x886(x8)23+12x83=3(6x+93)(77x3)(x832)6x83(x832)=3(6x+9)3.(77x)3.(x832)x=168(x8)=(6x+9)(77x)8x+64=42x42x263x+6342x2+13x+1=0Δ=169168=1x=13+184=1484=16,17...m.n.1970...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com