All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 116915 by mathdave last updated on 07/Oct/20
Answered by Lordose last updated on 07/Oct/20
Ξ©=limnββan1+anΞ©=limnββanlnaanlnaΞ©=1
Answered by mathmax by abdo last updated on 08/Oct/20
un=an(1+a)(1+a2)....(1+an)βln(un)=nln(a)βln(βk=1n(1+ak))=nlnaββk=1nln(1+ak)wehavelnβ²(1+u)=11+u=1βu+u2β..βln(1+u)=uβu22+...βuβu22β©½ln(1+u)β©½uβakβa2k2β©½ln(1+ak)β©½akββk=1n(akβ12a2k)β©½βk=1nln(1+ak)β©½βk=1nakββ1βan+11βaβ1β12Γ(1βa2n+21βa2β1)β©½βk=1nln(1+ak)β©½1βan+11βaβ1(ifaβ 1)nlnaβ1βan+11βa+1β©½ln(un)β©½nln(a)β1βan+11βa+12+1βa2n+22(1βa2)ifβ£aβ£<1duetolimnβ+βnlna=+βwegetlimnβ+βln(un)=+ββlimnβ+βun=+βifβ£aβ£>1weputa=1uββ£uβ£<1ββnlnuβ1β1un+11β1u+1β©½ln(un)β©½βnlnuβ1β1un+11β1u+1β1u2n+22(1β1u2)....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com