Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 116930 by bobhans last updated on 08/Oct/20

Given f(x)=5^(√x)  find f ′(x) by using limit  (first principal derivative)

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{5}^{\sqrt{\mathrm{x}}} \:\mathrm{find}\:\mathrm{f}\:'\left(\mathrm{x}\right)\:\mathrm{by}\:\mathrm{using}\:\mathrm{limit} \\ $$$$\left(\mathrm{first}\:\mathrm{principal}\:\mathrm{derivative}\right) \\ $$

Commented by bobhans last updated on 08/Oct/20

Answered by 1549442205PVT last updated on 09/Oct/20

First,we prove that lim _(x→0) ((a^x −1)/x)=lna.  by using the definition of limit  We can assume x>0(if x<0 put x=−t)  Suppose ε>0 be an arbitrarily small number  so that ∣((a^x −1)/x)−lna∣<ε.Then choosing    δ=((ln[(−εx+xlna+1)^(−1) ])/(lna))>0 we have  ∣x∣<δ⇔−((ln[(−εx+xlna+1)^(−1) ])/(lna))<x<((ln[(−εx+xlna+1)^(−1) ])/(lna))  ⇒−ln[(−εx+xlna+1)^(−1) ]<xlna<ln[(−εx+xlna+1)^(−1) ]  ⇒ln(−εx+xlna+1)<lna^x <ln[(−εx+xlna+1)^(−1) ]  ⇒−εx+xlna+1<a^x <(−εx+xlna+1)^(−1)   ⇒−εx<a^x −1−xlna<εx  (Since (−εx+xlna+1)^(−1) =(1/(−εx+xlna+1))  <−εx+xlna+1<εx+xlna+1)  ⇒−ε<((a^x −1−xlna)/x)<ε⇒∣((a^x −1)/x)−lna∣<ε  By the definition of the limit  of a  function we have:  lim_(x→0) ((a^x −1)/x)=lna (Q.E.D)(1)  Now by the definition of derivative of a  function we have  f ′(x)=lim{[f(x+Δx)−f(x)]/Δx}.Hence,  (5^(√x)   )′=lim_(Δu→0) ((5^(√(x+Δx))  −5^(√x)   )/( Δx))  =lim_(Δx→0) ((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx)/( (√(x+Δx))−(√x)))))  =lim((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx((√(x+Δx))+(√x)))/( (√(x+Δx))−(√x))((√(x+Δx))+(√x))))))  =lim((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx((√(x+Δx))+(√x)))/( Δx))))  =lim_(Δx→0) (((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).))).lim_(Δx→0) (1/( (√(x+Δx))+(√x)))  =5^(√x) ln5.(1/(2(√x)))   since lim_(Δx→0) (((5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).))=ln5(by (1))  Thus,finally we obtained   (a^(√x) )′=((5^(√x) ln5)/(2(√x))) is proved by limit

$$\mathrm{First},\mathrm{we}\:\mathrm{prove}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}\:}\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}}=\mathrm{lna}. \\ $$$$\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{limit} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{assume}\:\mathrm{x}>\mathrm{0}\left(\mathrm{if}\:\mathrm{x}<\mathrm{0}\:\mathrm{put}\:\mathrm{x}=−\mathrm{t}\right) \\ $$$$\mathrm{Suppose}\:\epsilon>\mathrm{0}\:\mathrm{be}\:\mathrm{an}\:\mathrm{arbitrarily}\:\mathrm{small}\:\mathrm{number} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mid\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}}−\mathrm{lna}\mid<\epsilon.\mathrm{Then}\:\mathrm{choosing} \\ $$$$\:\:\delta=\frac{\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right]}{\mathrm{lna}}>\mathrm{0}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mid\mathrm{x}\mid<\delta\Leftrightarrow−\frac{\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right]}{\mathrm{lna}}<\mathrm{x}<\frac{\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right]}{\mathrm{lna}} \\ $$$$\Rightarrow−\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right]<\mathrm{xlna}<\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right] \\ $$$$\Rightarrow\mathrm{ln}\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)<\mathrm{lna}^{\mathrm{x}} <\mathrm{ln}\left[\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \right] \\ $$$$\Rightarrow−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}<\mathrm{a}^{\mathrm{x}} <\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} \\ $$$$\Rightarrow−\epsilon\mathrm{x}<\mathrm{a}^{\mathrm{x}} −\mathrm{1}−\mathrm{xlna}<\epsilon\mathrm{x} \\ $$$$\left(\mathrm{Since}\:\left(−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right)^{−\mathrm{1}} =\frac{\mathrm{1}}{−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}}\right. \\ $$$$\left.<−\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}<\epsilon\mathrm{x}+\mathrm{xlna}+\mathrm{1}\right) \\ $$$$\Rightarrow−\epsilon<\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{1}−\mathrm{xlna}}{\mathrm{x}}<\epsilon\Rightarrow\mid\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}}−\mathrm{lna}\mid<\epsilon \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{the}\:\mathrm{limit}\:\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{we}\:\mathrm{have}: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}}=\mathrm{lna}\:\left(\boldsymbol{\mathrm{Q}}.\boldsymbol{\mathrm{E}}.\boldsymbol{\mathrm{D}}\right)\left(\mathrm{1}\right) \\ $$$$\mathrm{Now}\:\mathrm{by}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{lim}\left\{\left[\mathrm{f}\left(\mathrm{x}+\Delta\mathrm{x}\right)−\mathrm{f}\left(\mathrm{x}\right)\right]/\Delta\mathrm{x}\right\}.\mathrm{Hence}, \\ $$$$\left(\mathrm{5}^{\sqrt{\mathrm{x}}} \:\:\right)'=\underset{\Delta\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}} \:−\mathrm{5}^{\sqrt{\mathrm{x}}} \:\:}{\:\Delta\mathrm{x}} \\ $$$$\underset{\Delta\mathrm{x}\rightarrow\mathrm{0}} {=\mathrm{lim}}\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} \left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}} −\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right).\frac{\Delta\mathrm{x}}{\:\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}}} \\ $$$$=\mathrm{lim}\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} \left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}} −\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right).\frac{\Delta\mathrm{x}\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}+\sqrt{\mathrm{x}}\right)}{\left.\:\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right)\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}+\sqrt{\mathrm{x}}\right)}} \\ $$$$=\mathrm{lim}\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} \left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}} −\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right).\frac{\Delta\mathrm{x}\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}+\sqrt{\mathrm{x}}\right)}{\:\Delta\mathrm{x}}} \\ $$$$=\underset{\Delta\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} \left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}} −\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right).}\right).\underset{\Delta\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}+\Delta\mathrm{x}}+\sqrt{\mathrm{x}}} \\ $$$$=\mathrm{5}^{\sqrt{\mathrm{x}}} \mathrm{ln5}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\: \\ $$$$\mathrm{since}\underset{\Delta\mathrm{x}\rightarrow\mathrm{0}} {\:\mathrm{lim}}\frac{\left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}} −\mathrm{1}\right)}{\:\left(\sqrt{\mathrm{x}+\Delta\mathrm{x}}−\sqrt{\mathrm{x}}\right).}=\mathrm{ln5}\left(\mathrm{by}\:\left(\mathrm{1}\right)\right) \\ $$$$\mathrm{Thus},\mathrm{finally}\:\mathrm{we}\:\mathrm{obtained}\: \\ $$$$\left(\mathrm{a}^{\sqrt{\mathrm{x}}} \right)'=\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} \mathrm{ln5}}{\mathrm{2}\sqrt{\mathrm{x}}}\:\mathrm{is}\:\mathrm{proved}\:\mathrm{by}\:\mathrm{limit} \\ $$

Commented by bemath last updated on 08/Oct/20

sir why not (5^(√x) /(2(√x))) .ln (5) ?

$$\mathrm{sir}\:\mathrm{why}\:\mathrm{not}\:\frac{\mathrm{5}^{\sqrt{\mathrm{x}}} }{\mathrm{2}\sqrt{\mathrm{x}}}\:.\mathrm{ln}\:\left(\mathrm{5}\right)\:? \\ $$

Commented by bemath last updated on 08/Oct/20

(5^(√(x+Δx))  −5^(√x)  )×(5^(√(x+Δx))  +5^(√x) )  ≠ 5^(x+Δx)  − 5^x  sir

$$\left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}} \:−\mathrm{5}^{\sqrt{\mathrm{x}}} \:\right)×\left(\mathrm{5}^{\sqrt{\mathrm{x}+\Delta\mathrm{x}}} \:+\mathrm{5}^{\sqrt{\mathrm{x}}} \right) \\ $$$$\neq\:\mathrm{5}^{\mathrm{x}+\Delta\mathrm{x}} \:−\:\mathrm{5}^{\mathrm{x}} \:\mathrm{sir} \\ $$

Commented by bobhans last updated on 08/Oct/20

sir pvt, your answer not correct sir

$$\mathrm{sir}\:\mathrm{pvt},\:\mathrm{your}\:\mathrm{answer}\:\mathrm{not}\:\mathrm{correct}\:\mathrm{sir} \\ $$

Commented by 1549442205PVT last updated on 08/Oct/20

I had a mistake and i am correcting it   and now it is corrected  completely  Please,check help me.Thank Sir

$$\mathrm{I}\:\mathrm{had}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{and}\:\mathrm{i}\:\mathrm{am}\:\mathrm{correcting}\:\mathrm{it}\: \\ $$$$\mathrm{and}\:\mathrm{now}\:\mathrm{it}\:\mathrm{is}\:\mathrm{corrected}\:\:\mathrm{completely} \\ $$$$\mathrm{Please},\mathrm{check}\:\mathrm{help}\:\mathrm{me}.\mathrm{Thank}\:\mathrm{Sir} \\ $$

Commented by bemath last updated on 08/Oct/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by bobhans last updated on 08/Oct/20

sir pvt, thank you

$$\mathrm{sir}\:\mathrm{pvt},\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by 1549442205PVT last updated on 09/Oct/20

Thank Sir.You are welcome.

$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Answered by TANMAY PANACEA last updated on 08/Oct/20

(dy/dx)=lim_(h→0)  ((5^((√(x+h)) ) −5^(√x) )/h)  =lim_(h→0)  5^((√x) ) ×(((5^((√(x+h)) −(√x) ) −1)/h))  =5^((√x) ) ×lim_(t→0) (((5^t −1)/t))×lim_(h→0) ((((√(x+h)) −(√x) )/h))[t=(√(x+h)) −(√x) ]  =5^((√x) ) ×lim_(t→0) (((e^(tln5) −1)/(tln5)))×ln5×lim_(h→0) ((h/h)×(1/( (√(x+h)) +(√x))))  =5^((√x) ) ×1×ln5×(1/(2(√x)))=5^((√x) ) ×ln5×(1/(2(√x)))

$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5}^{\sqrt{{x}+{h}}\:} −\mathrm{5}^{\sqrt{{x}}} }{{h}} \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{5}^{\sqrt{{x}}\:} ×\left(\frac{\mathrm{5}^{\sqrt{{x}+{h}}\:−\sqrt{{x}}\:} −\mathrm{1}}{{h}}\right) \\ $$$$=\mathrm{5}^{\sqrt{{x}}\:} ×\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{5}^{{t}} −\mathrm{1}}{{t}}\right)×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{{x}+{h}}\:−\sqrt{{x}}\:}{{h}}\right)\left[{t}=\sqrt{{x}+{h}}\:−\sqrt{{x}}\:\right] \\ $$$$=\mathrm{5}^{\sqrt{{x}}\:} ×\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{e}^{{tln}\mathrm{5}} −\mathrm{1}}{{tln}\mathrm{5}}\right)×{ln}\mathrm{5}×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{h}}{{h}}×\frac{\mathrm{1}}{\:\sqrt{{x}+{h}}\:+\sqrt{{x}}}\right) \\ $$$$=\mathrm{5}^{\sqrt{{x}}\:} ×\mathrm{1}×{ln}\mathrm{5}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}=\mathrm{5}^{\sqrt{{x}}\:} ×{ln}\mathrm{5}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com