Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116939 by joki last updated on 08/Oct/20

prof  if  the limitf(x)=L and   limit f(x)=M,then L=M

$${prof}\:\:{if}\:\:{the}\:{limitf}\left({x}\right)={L}\:{and}\: \\ $$$${limit}\:{f}\left({x}\right)={M},{then}\:{L}={M} \\ $$

Answered by MAB last updated on 08/Oct/20

lim_(x→x_0 ) f(x)=L=M  ⇒[(∀ε>0)(∃α>0)(∀x∈D_f ):∣x−x_0 ∣<α⇒∣f(x)−L ∣<ε]  and [(∀ε′>0)(∃α′>0)(∀x∈D_f ):∣x−x_0 ∣<α′⇒∣f(x)−M ∣<ε′]  we have ∣M−L∣≤∣f(x)−L∣+f(x)−M∣ triangle inequality  hence (∀ε>0)(∃δ=min(α,α′)>0): ∣x−x_0 ∣<δ⇒∣M−L∣<∍  finally M=L

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow{x}_{\mathrm{0}} } {\boldsymbol{\mathrm{lim}}}{f}\left({x}\right)={L}={M} \\ $$$$\Rightarrow\left[\left(\forall\varepsilon>\mathrm{0}\right)\left(\exists\alpha>\mathrm{0}\right)\left(\forall{x}\in{D}_{{f}} \right):\mid{x}−{x}_{\mathrm{0}} \mid<\alpha\Rightarrow\mid{f}\left({x}\right)−{L}\:\mid<\varepsilon\right] \\ $$$${and}\:\left[\left(\forall\varepsilon'>\mathrm{0}\right)\left(\exists\alpha'>\mathrm{0}\right)\left(\forall{x}\in{D}_{{f}} \right):\mid{x}−{x}_{\mathrm{0}} \mid<\alpha'\Rightarrow\mid{f}\left({x}\right)−{M}\:\mid<\varepsilon'\right] \\ $$$${we}\:{have}\:\mid{M}−{L}\mid\leqslant\mid{f}\left({x}\right)−{L}\mid+{f}\left({x}\right)−{M}\mid\:{triangle}\:{inequality} \\ $$$${hence}\:\left(\forall\epsilon>\mathrm{0}\right)\left(\exists\delta={min}\left(\alpha,\alpha'\right)>\mathrm{0}\right):\:\mid{x}−{x}_{\mathrm{0}} \mid<\delta\Rightarrow\mid{M}−{L}\mid<\backepsilon \\ $$$${finally}\:{M}={L} \\ $$

Answered by MAB last updated on 08/Oct/20

lim_(x→x_0 ) f(x)=L=M  ⇒[(∀ε>0)(∃α>0)(∀x∈D_f ):∣x−x_0 ∣<α⇒∣f(x)−L ∣<ε]  and [(∀ε′>0)(∃α′>0)(∀x∈D_f ):∣x−x_0 ∣<α′⇒∣f(x)−M ∣<ε′]  we have ∣M−L∣≤∣f(x)−L∣+f(x)−M∣ triangle inequality  hence (∀ε>0)(∃δ=min(α,α′)>0): ∣x−x_0 ∣<δ⇒∣M−L∣<∍  finally M=L

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow{x}_{\mathrm{0}} } {\boldsymbol{\mathrm{lim}}}{f}\left({x}\right)={L}={M} \\ $$$$\Rightarrow\left[\left(\forall\varepsilon>\mathrm{0}\right)\left(\exists\alpha>\mathrm{0}\right)\left(\forall{x}\in{D}_{{f}} \right):\mid{x}−{x}_{\mathrm{0}} \mid<\alpha\Rightarrow\mid{f}\left({x}\right)−{L}\:\mid<\varepsilon\right] \\ $$$${and}\:\left[\left(\forall\varepsilon'>\mathrm{0}\right)\left(\exists\alpha'>\mathrm{0}\right)\left(\forall{x}\in{D}_{{f}} \right):\mid{x}−{x}_{\mathrm{0}} \mid<\alpha'\Rightarrow\mid{f}\left({x}\right)−{M}\:\mid<\varepsilon'\right] \\ $$$${we}\:{have}\:\mid{M}−{L}\mid\leqslant\mid{f}\left({x}\right)−{L}\mid+{f}\left({x}\right)−{M}\mid\:{triangle}\:{inequality} \\ $$$${hence}\:\left(\forall\epsilon>\mathrm{0}\right)\left(\exists\delta={min}\left(\alpha,\alpha'\right)>\mathrm{0}\right):\:\mid{x}−{x}_{\mathrm{0}} \mid<\delta\Rightarrow\mid{M}−{L}\mid<\backepsilon \\ $$$${finally}\:{M}={L} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com