Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 116983 by Olaf last updated on 08/Oct/20

Luigi, an Italian cook, drops a spaghetti  which breaks into three pieces.  What is the probability of making a  triangle with the three pieces ?

$$\mathrm{Luigi},\:\mathrm{an}\:\mathrm{Italian}\:\mathrm{cook},\:\mathrm{drops}\:\mathrm{a}\:\mathrm{spaghetti} \\ $$$$\mathrm{which}\:\mathrm{breaks}\:\mathrm{into}\:\mathrm{three}\:\mathrm{pieces}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{making}\:\mathrm{a} \\ $$$$\mathrm{triangle}\:\mathrm{with}\:\mathrm{the}\:\mathrm{three}\:\mathrm{pieces}\:? \\ $$

Commented by mr W last updated on 08/Oct/20

i think it′s (1/8).

$${i}\:{think}\:{it}'{s}\:\frac{\mathrm{1}}{\mathrm{8}}. \\ $$

Commented by Olaf last updated on 08/Oct/20

No sir...

$$\mathrm{No}\:\mathrm{sir}... \\ $$

Commented by mr W last updated on 08/Oct/20

Commented by mr W last updated on 08/Oct/20

then (1/4)

$${then}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented by Olaf last updated on 08/Oct/20

Yes sir ! Bravo !    If x, y and z are the 3 lenghts of  spaghetti with 0 ≤ x, y, z ≤ l this  defines an equilateral triangle in space.  The equation is x+y+z = l.  The area of this triangle (all possible  cases) is ((√3)/4)(√(2l)) = ((√6)/4)l.    But, to make a triangle with the 3  pieces we need 0 ≤ x, y, z ≤ (l/2).  This defines a second equilateral  triangle in space (all probable cases)  with an area a quarter of the first  one.

$$\mathrm{Yes}\:\mathrm{sir}\:!\:\mathrm{Bravo}\:! \\ $$$$ \\ $$$$\mathrm{If}\:{x},\:{y}\:\mathrm{and}\:{z}\:\mathrm{are}\:\mathrm{the}\:\mathrm{3}\:\mathrm{lenghts}\:\mathrm{of} \\ $$$$\mathrm{spaghetti}\:\mathrm{with}\:\mathrm{0}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:{l}\:\mathrm{this} \\ $$$$\mathrm{defines}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{in}\:\mathrm{space}. \\ $$$$\mathrm{The}\:\mathrm{equation}\:\mathrm{is}\:{x}+{y}+{z}\:=\:{l}. \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{this}\:\mathrm{triangle}\:\left(\mathrm{all}\:\mathrm{possible}\right. \\ $$$$\left.\mathrm{cases}\right)\:\mathrm{is}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\sqrt{\mathrm{2}{l}}\:=\:\frac{\sqrt{\mathrm{6}}}{\mathrm{4}}{l}. \\ $$$$ \\ $$$$\mathrm{But},\:\mathrm{to}\:\mathrm{make}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{the}\:\mathrm{3} \\ $$$$\mathrm{pieces}\:\mathrm{we}\:\mathrm{need}\:\mathrm{0}\:\leqslant\:{x},\:{y},\:{z}\:\leqslant\:\frac{{l}}{\mathrm{2}}. \\ $$$$\mathrm{This}\:\mathrm{defines}\:\mathrm{a}\:\mathrm{second}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}\:\mathrm{in}\:\mathrm{space}\:\left(\mathrm{all}\:\mathrm{probable}\:\mathrm{cases}\right) \\ $$$$\mathrm{with}\:\mathrm{an}\:\mathrm{area}\:\mathrm{a}\:\mathrm{quarter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{one}. \\ $$$$ \\ $$

Answered by mr W last updated on 09/Oct/20

Commented by mr W last updated on 09/Oct/20

this is how i solved.  say the length of spagetti AB is 1.  it breaks randomly at point C & D  with AC=x and AD=y.  0<x, y<1  the points in square 1×1 represent   all possibilities. we only need to treat  half of all possibilities: y≥x. that is  the orange triangle area.    AC=x  CD=y−x  DB=1−y  such that the three pieces can form  a triangle, we must have  x+(y−x)>1−y ⇒ y>(1/2)   ...(i)  x+(1−y)>y−x ⇒ y−x>(1/2)   ...(ii)  (y−x)+(1−y)>x ⇒ x<(1/2)   ...(iii)  (i),(ii),(iii) mean the points in the  green triangle area.    the requested probability is  p=((area of yellow trangle)/(area of orange triangle))=(1/4)

$${this}\:{is}\:{how}\:{i}\:{solved}. \\ $$$${say}\:{the}\:{length}\:{of}\:{spagetti}\:{AB}\:{is}\:\mathrm{1}. \\ $$$${it}\:{breaks}\:{randomly}\:{at}\:{point}\:{C}\:\&\:{D} \\ $$$${with}\:{AC}={x}\:{and}\:{AD}={y}. \\ $$$$\mathrm{0}<{x},\:{y}<\mathrm{1} \\ $$$${the}\:{points}\:{in}\:{square}\:\mathrm{1}×\mathrm{1}\:{represent}\: \\ $$$${all}\:{possibilities}.\:{we}\:{only}\:{need}\:{to}\:{treat} \\ $$$${half}\:{of}\:{all}\:{possibilities}:\:{y}\geqslant{x}.\:{that}\:{is} \\ $$$${the}\:{orange}\:{triangle}\:{area}. \\ $$$$ \\ $$$${AC}={x} \\ $$$${CD}={y}−{x} \\ $$$${DB}=\mathrm{1}−{y} \\ $$$${such}\:{that}\:{the}\:{three}\:{pieces}\:{can}\:{form} \\ $$$${a}\:{triangle},\:{we}\:{must}\:{have} \\ $$$${x}+\left({y}−{x}\right)>\mathrm{1}−{y}\:\Rightarrow\:{y}>\frac{\mathrm{1}}{\mathrm{2}}\:\:\:...\left({i}\right) \\ $$$${x}+\left(\mathrm{1}−{y}\right)>{y}−{x}\:\Rightarrow\:{y}−{x}>\frac{\mathrm{1}}{\mathrm{2}}\:\:\:...\left({ii}\right) \\ $$$$\left({y}−{x}\right)+\left(\mathrm{1}−{y}\right)>{x}\:\Rightarrow\:{x}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\:...\left({iii}\right) \\ $$$$\left({i}\right),\left({ii}\right),\left({iii}\right)\:{mean}\:{the}\:{points}\:{in}\:{the} \\ $$$${green}\:{triangle}\:{area}. \\ $$$$ \\ $$$${the}\:{requested}\:{probability}\:{is} \\ $$$${p}=\frac{{area}\:{of}\:{yellow}\:{trangle}}{{area}\:{of}\:{orange}\:{triangle}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented by mr W last updated on 09/Oct/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com