Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116998 by TANMAY PANACEA last updated on 08/Oct/20

∫_((−π)/2) ^(π/2)  ((sin^2 x)/(1+2^x ))dx

π2π2sin2x1+2xdx

Commented by Dwaipayan Shikari last updated on 08/Oct/20

∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^x ))dx=∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^(−x) ))dx  2I=∫_(−(π/2)) ^(π/2) sin^2 xdx  2I=∫_(−(π/2)) ^(π/2) ((1−cos2x)/2)  2I=(π/2)−(1/4)∫_(−(π/2)) ^(π/2) sin2x  I=(π/4)

π2π2sin2x1+2xdx=π2π2sin2x1+2xdx2I=π2π2sin2xdx2I=π2π21cos2x22I=π214π2π2sin2xI=π4

Commented by TANMAY PANACEA last updated on 08/Oct/20

thank you

thankyou

Answered by TANMAY PANACEA last updated on 08/Oct/20

∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^(−x) ))dx  2I=∫_((−π)/2) ^(π/2)  sin^2 x((1/(1+2^x ))+(2^x /(2^x +1)))dx  2I=∫_((−π)/2) ^(π/2)  ((1−cos2x)/2)dx  I=(1/4)∣x−((sin2x)/2)∣_((−π)/2) ^(π/2) =(1/4)(π)

abf(x)dx=abf(a+bx)dxπ2π2sin2x1+2xdx2I=π2π2sin2x(11+2x+2x2x+1)dx2I=π2π21cos2x2dxI=14xsin2x2π2π2=14(π)

Answered by mathmax by abdo last updated on 08/Oct/20

let∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^x ))dx =I changement x=−t give  I =∫_(−(π/2)) ^(π/2)  ((sin^2 t)/(1+2^(−t) ))dt ⇒2I =∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^x )) dx +∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^(−x) ))dx  =∫_(−(π/2)) ^(π/2) ((1/(1+2^x ))+(1/(1+2^(−x) )))sin^2 x dx =∫_(−(π/2)) ^(π/2) (((2+2^x +2^(−x) )/(1+2^(−x)  +2^x  +1)))sin^2 x dx  =∫_(−(π/2)) ^(π/2) ((1−cos(2x))/2)dx =(π/2)−(1/4)[sin(2x)]_(−(π/2)) ^(π/2)  =(π/2) ⇒2I =(π/2)  ⇒★I =(π/4) ★

letπ2π2sin2x1+2xdx=Ichangementx=tgiveI=π2π2sin2t1+2tdt2I=π2π2sin2x1+2xdx+π2π2sin2x1+2xdx=π2π2(11+2x+11+2x)sin2xdx=π2π2(2+2x+2x1+2x+2x+1)sin2xdx=π2π21cos(2x)2dx=π214[sin(2x)]π2π2=π22I=π2I=π4

Commented by TANMAY PANACEA last updated on 08/Oct/20

thank you sir

thankyousir

Commented by Bird last updated on 09/Oct/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com