Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116998 by TANMAY PANACEA last updated on 08/Oct/20

∫_((−π)/2) ^(π/2)  ((sin^2 x)/(1+2^x ))dx

$$\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$

Commented by Dwaipayan Shikari last updated on 08/Oct/20

∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^x ))dx=∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^(−x) ))dx  2I=∫_(−(π/2)) ^(π/2) sin^2 xdx  2I=∫_(−(π/2)) ^(π/2) ((1−cos2x)/2)  2I=(π/2)−(1/4)∫_(−(π/2)) ^(π/2) sin2x  I=(π/4)

$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{−{x}} }{dx} \\ $$$$\mathrm{2}{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {xdx} \\ $$$$\mathrm{2}{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {sin}\mathrm{2}{x} \\ $$$${I}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Commented by TANMAY PANACEA last updated on 08/Oct/20

thank you

$${thank}\:{you} \\ $$

Answered by TANMAY PANACEA last updated on 08/Oct/20

∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^(−x) ))dx  2I=∫_((−π)/2) ^(π/2)  sin^2 x((1/(1+2^x ))+(2^x /(2^x +1)))dx  2I=∫_((−π)/2) ^(π/2)  ((1−cos2x)/2)dx  I=(1/4)∣x−((sin2x)/2)∣_((−π)/2) ^(π/2) =(1/4)(π)

$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx} \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{−\boldsymbol{{x}}} }\boldsymbol{{dx}} \\ $$$$\mathrm{2}\boldsymbol{{I}}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} {x}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{{x}} }+\frac{\mathrm{2}^{{x}} }{\mathrm{2}^{{x}} +\mathrm{1}}\right){dx} \\ $$$$\mathrm{2}{I}=\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}{dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}\mid{x}−\frac{{sin}\mathrm{2}{x}}{\mathrm{2}}\mid_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\pi\right) \\ $$

Answered by mathmax by abdo last updated on 08/Oct/20

let∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^x ))dx =I changement x=−t give  I =∫_(−(π/2)) ^(π/2)  ((sin^2 t)/(1+2^(−t) ))dt ⇒2I =∫_(−(π/2)) ^(π/2)  ((sin^2 x)/(1+2^x )) dx +∫_(−(π/2)) ^(π/2) ((sin^2 x)/(1+2^(−x) ))dx  =∫_(−(π/2)) ^(π/2) ((1/(1+2^x ))+(1/(1+2^(−x) )))sin^2 x dx =∫_(−(π/2)) ^(π/2) (((2+2^x +2^(−x) )/(1+2^(−x)  +2^x  +1)))sin^2 x dx  =∫_(−(π/2)) ^(π/2) ((1−cos(2x))/2)dx =(π/2)−(1/4)[sin(2x)]_(−(π/2)) ^(π/2)  =(π/2) ⇒2I =(π/2)  ⇒★I =(π/4) ★

$$\mathrm{let}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{2}^{\mathrm{x}} }\mathrm{dx}\:=\mathrm{I}\:\mathrm{changement}\:\mathrm{x}=−\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{t}}{\mathrm{1}+\mathrm{2}^{−\mathrm{t}} }\mathrm{dt}\:\Rightarrow\mathrm{2I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{2}^{\mathrm{x}} }\:\mathrm{dx}\:+\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{2}^{−\mathrm{x}} }\mathrm{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{x}} }+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{−\mathrm{x}} }\right)\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{dx}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{2}+\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{−\mathrm{x}} }{\mathrm{1}+\mathrm{2}^{−\mathrm{x}} \:+\mathrm{2}^{\mathrm{x}} \:+\mathrm{1}}\right)\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}\mathrm{dx}\:=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{sin}\left(\mathrm{2x}\right)\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{2}}\:\Rightarrow\mathrm{2I}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\bigstar\mathrm{I}\:=\frac{\pi}{\mathrm{4}}\:\bigstar \\ $$

Commented by TANMAY PANACEA last updated on 08/Oct/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Bird last updated on 09/Oct/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com