All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116999 by TANMAY PANACEA last updated on 08/Oct/20
∫dx(a+bcosx)2
Answered by Olaf last updated on 08/Oct/20
I(x)=∫dx(a+beix+e−ix2)2u=eixdu=ieixdx=iudxdx=−iduuI(u)=−i∫duu(a+bu+1u2)2I(u)=−i∫udu(au+bu2+12)2I(u)=−i∫4udu(bu2+2au+b)2I(u)=−4ib2∫4udu[(u+ab)2+1−a2b2]2Differentcasesinfunctionofsignof1−a2b2...
Answered by mathmax by abdo last updated on 08/Oct/20
letφ(a)=∫dxa+bcosx⇒φ′(a)=−∫dx(a+bcosx)2⇒∫dx(a+bcosx)2=−φ′(a)butφ(a)=tan(x2)=t∫2dt(1+t2)(a+b1−t21+t2)=∫2dta+at2+b−bt2=2∫dt(a−b)t2+a+b=2a−b∫dtt2+a+ba−bcase1a+ba−b>0wedoch.t=a+ba−bz⇒φ(a)=2a−b×a−ba+b∫11+z2a+ba−bdz=2a2−b2arctan(a−ba+bt)=2a2−b2arctan(a−ba+btan(x2))+c⇒φ′(a)=2(a2−b2)−12=−2a(a2−b2)−32arctan(a−ba+btan(x2))+2a2−b2tan(x2)×(a−ba+b)′2a−ba+b(1+a−ba+btan2(x2))with(a−ba+b)′=a+b−(a−b)(a+b)2=2b(a+b)2case2a+ba−b<0⇒φ(a)=2a−b∫dtt2−(a+bb−a)=t=b+ab−au2a−b×b−ab+a∫1u2−1×b+ab−adu=−2b2−a2∫(1u−1−1u+1)du=−2b2−a2ln∣u−1u+1∣+c=−2b2−a2ln∣b−ab+atan(x2)−1b−ab+atan(x2)+1∣+crestcalculusofφ′(a)...
Answered by TANMAY PANACEA last updated on 09/Oct/20
p=sinxa+bcosx→dpdx=(a+bcosx)cosx−sinx(−bsinx)(a+bcosx)2dpdx=acosx+b(a+bcosx)2=ab(bcosx+a−a)+b(a+bcosx)2dpdx=ab(a+bcosx)+b2−a2b(a+bcosx)2∫d(sinxa+bcosx)=ab∫dxb(ab+1−tan2x21+tan2x2)+b2−a2b×Isinxa+bcosx=ab2∫sec2x2ab+1+(ab−1)tan2x2dx+b2−a2b×Isinxa+bcosx=ab2∫sec2x2(ab−1)(a+bb×ba−b+tan2x2)+b2−a2bIsinxa+bcosx=ab2×b(a−b)∫d(tanx2)×2{(a+ba−b)2+tan2x2+b2−a2b×I(bb2−a2)(sinxa+bcosx)=ab×1a−b×2b(a+b)(a−b)×1a+ba−b×tan−1(tanx2a+ba−b)+IsoI=bb2−a2(sinxa+bcosx)−2a(a+b)(a−b)2×a−ba+b×tan−1(tanx2a+ba−b)+CI=bb2−a2(sinxa+bcosx)−2a(a2−b2)32tan−1(tanx2a+ba−b)+Cplscheck
Terms of Service
Privacy Policy
Contact: info@tinkutara.com