Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116999 by TANMAY PANACEA last updated on 08/Oct/20

∫(dx/((a+bcosx)^2 ))

dx(a+bcosx)2

Answered by Olaf last updated on 08/Oct/20

I(x) = ∫(dx/((a+b((e^(ix) +e^(−ix) )/2))^2 ))  u = e^(ix)   du = ie^(ix) dx = iudx  dx = −i(du/u)  I(u) = −i∫((du/u)/((a+b((u+(1/u))/2))^2 ))  I(u) = −i∫((udu)/((au+b((u^2 +1)/2))^2 ))  I(u) = −i∫((4udu)/((bu^2 +2au+b)^2 ))  I(u) = −((4i)/b^2 )∫((4udu)/([(u+(a/b))^2 +1−(a^2 /b^2 )]^2 ))  Different cases in function of sign of  1−(a^2 /b^2 )...

I(x)=dx(a+beix+eix2)2u=eixdu=ieixdx=iudxdx=iduuI(u)=iduu(a+bu+1u2)2I(u)=iudu(au+bu2+12)2I(u)=i4udu(bu2+2au+b)2I(u)=4ib24udu[(u+ab)2+1a2b2]2Differentcasesinfunctionofsignof1a2b2...

Answered by mathmax by abdo last updated on 08/Oct/20

let  ϕ(a) =∫  (dx/(a+bcosx)) ⇒ϕ^′ (a) =−∫  (dx/((a+bcosx)^2 )) ⇒  ∫ (dx/((a+bcosx)^2 ))=−ϕ^′ (a)  but ϕ(a) =_(tan((x/2))=t)   ∫   ((2dt)/((1+t^2 )(a+b((1−t^2 )/(1+t^2 )))))  =∫  ((2dt)/(a+at^2  +b−bt^2 )) =2∫  (dt/((a−b)t^2  +a+b))  =(2/(a−b)) ∫  (dt/(t^2 +((a+b)/(a−b))))  case 1  ((a+b)/(a−b))>0  we do ch.t =(√((a+b)/(a−b)))z ⇒  ϕ(a) =(2/(a−b)) ×((a−b)/(a+b)) ∫  (1/(1+z^2 ))((√(a+b))/(√(a−b)))dz =(2/(√(a^2 −b^2 ))) arctan((√((a−b)/(a+b)))t)  =(2/(√(a^2 −b^2 ))) arctan((√((a−b)/(a+b)))tan((x/2)))+c ⇒  ϕ^′ (a) =2(a^2 −b^2 )^(−(1/2))  =−2a(a^2 −b^2 )^(−(3/2))  arctan((√((a−b)/(a+b)))tan((x/2)))  +(2/(√(a^2 −b^2 )))tan((x/2))×(((((a−b)/(a+b)))^′ )/(2(√((a−b)/(a+b)))(1+((a−b)/(a+b))tan^2 ((x/2))))) with  (((a−b)/(a+b)))^′  =((a+b−(a−b))/((a+b)^2 )) =((2b)/((a+b)^2 ))  case 2  ((a+b)/(a−b))<0 ⇒ϕ(a) =(2/(a−b))∫  (dt/(t^2 −(((a+b)/(b−a)))))  =_(t =(√((b+a)/(b−a)))u)    (2/(a−b)) ×((b−a)/(b+a)) ∫  (1/(u^2 −1))×((√(b+a))/(√(b−a))) du  =((−2)/(√(b^2 −a^2 )))∫((1/(u−1))−(1/(u+1)))du =((−2)/(√(b^2 −a^2 )))ln∣((u−1)/(u+1))∣ +c  =((−2)/(√(b^2 −a^2 )))ln∣(((√((b−a)/(b+a)))tan((x/2))−1)/((√((b−a)/(b+a)))tan((x/2))+1))∣ +c  rest calculus of ϕ^′ (a)...

letφ(a)=dxa+bcosxφ(a)=dx(a+bcosx)2dx(a+bcosx)2=φ(a)butφ(a)=tan(x2)=t2dt(1+t2)(a+b1t21+t2)=2dta+at2+bbt2=2dt(ab)t2+a+b=2abdtt2+a+babcase1a+bab>0wedoch.t=a+babzφ(a)=2ab×aba+b11+z2a+babdz=2a2b2arctan(aba+bt)=2a2b2arctan(aba+btan(x2))+cφ(a)=2(a2b2)12=2a(a2b2)32arctan(aba+btan(x2))+2a2b2tan(x2)×(aba+b)2aba+b(1+aba+btan2(x2))with(aba+b)=a+b(ab)(a+b)2=2b(a+b)2case2a+bab<0φ(a)=2abdtt2(a+bba)=t=b+abau2ab×bab+a1u21×b+abadu=2b2a2(1u11u+1)du=2b2a2lnu1u+1+c=2b2a2lnbab+atan(x2)1bab+atan(x2)+1+crestcalculusofφ(a)...

Answered by TANMAY PANACEA last updated on 09/Oct/20

p=((sinx)/(a+bcosx))→(dp/dx)=(((a+bcosx)cosx−sinx(−bsinx))/((a+bcosx)^2 ))  (dp/dx)=((acosx+b)/((a+bcosx)^2 ))=(((a/b)(bcosx+a−a)+b)/((a+bcosx)^2 ))  (dp/dx)=((a/b)/((a+bcosx)))+(((b^2 −a^2 )/b)/((a+bcosx)^2 ))  ∫d(((sinx)/(a+bcosx)))=(a/b)∫(dx/(b((a/b)+((1−tan^2 (x/2))/(1+tan^2 (x/2))))))+((b^2 −a^2 )/b)×I  ((sinx)/(a+bcosx))=(a/b^2 )∫((sec^2 (x/2))/((a/b)+1+((a/b)−1)tan^2 (x/2)))dx+((b^2 −a^2 )/b)×I  ((sinx)/(a+bcosx))=(a/b^2 )∫((sec^2 (x/2))/(((a/b)−1)(((a+b)/b)×(b/(a−b))+tan^2 (x/2))))+((b^2 −a^2 )/b)I  ((sinx)/(a+bcosx))=(a/b^2 )×(b/((a−b)))∫((d(tan(x/2))×2)/({((√((a+b)/(a−b))) )^2 +tan^2 (x/2)))+((b^2 −a^2 )/b)×I  ((b/(b^2 −a^2 )))(((sinx)/(a+bcosx)))=(a/b)×(1/(a−b))×((2b)/((a+b)(a−b)))×(1/( (√((a+b)/(a−b)))))×tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+I  so I=  (b/(b^2 −a^2 ))(((sinx)/(a+bcosx)))−((2a)/((a+b)(a−b)^2 ))×((√(a−b))/( (√(a+b))))×tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+C  I=(b/(b^2 −a^2 ))(((sinx)/(a+bcosx)))−((2a)/((a^2 −b^2 )^(3/2) ))tan^(−1) (((tan(x/2))/( (√((a+b)/(a−b))))))+C  pls check

p=sinxa+bcosxdpdx=(a+bcosx)cosxsinx(bsinx)(a+bcosx)2dpdx=acosx+b(a+bcosx)2=ab(bcosx+aa)+b(a+bcosx)2dpdx=ab(a+bcosx)+b2a2b(a+bcosx)2d(sinxa+bcosx)=abdxb(ab+1tan2x21+tan2x2)+b2a2b×Isinxa+bcosx=ab2sec2x2ab+1+(ab1)tan2x2dx+b2a2b×Isinxa+bcosx=ab2sec2x2(ab1)(a+bb×bab+tan2x2)+b2a2bIsinxa+bcosx=ab2×b(ab)d(tanx2)×2{(a+bab)2+tan2x2+b2a2b×I(bb2a2)(sinxa+bcosx)=ab×1ab×2b(a+b)(ab)×1a+bab×tan1(tanx2a+bab)+IsoI=bb2a2(sinxa+bcosx)2a(a+b)(ab)2×aba+b×tan1(tanx2a+bab)+CI=bb2a2(sinxa+bcosx)2a(a2b2)32tan1(tanx2a+bab)+Cplscheck

Terms of Service

Privacy Policy

Contact: info@tinkutara.com