Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117002 by TANMAY PANACEA last updated on 08/Oct/20

∫_0 ^(nπ+v) ∣sinx∣ dx

0nπ+vsinxdx

Answered by TANMAY PANACEA last updated on 08/Oct/20

∣sinx∣ is alsays +ve and each loop area of  sinx is 2  ★★   ∫_0 ^π sinx dx=−∣cosx∣_0 ^π =2  ★★  now look  ∫_0 ^(nπ+v) ∣sinx∣dx=∫_0 ^v ∣sinx∣dx+∫_v ^(nπ+v) ∣sinx∣dx  here 0<v<π  ∫_0 ^v sinx dx=−∣cosx∣_0 ^v =−(cozv−1)=1−cosv  ∫_v ^(nπ+v) ∣sinx∣dx→in interval v to v+nπ  n umber of loop so  ∫_v ^(nπ+v)  ∣sinx∣dx=n×2=2n  I=2n+1−cosv  plz check

sinxisalsays+veandeachloopareaofsinxis20πsinxdx=cosx0π=2nowlook0nπ+vsinxdx=0vsinxdx+vnπ+vsinxdxhere0<v<π0vsinxdx=cosx0v=(cozv1)=1cosvvnπ+vsinxdxinintervalvtov+nπnumberofloopsovnπ+vsinxdx=n×2=2nI=2n+1cosvplzcheck

Terms of Service

Privacy Policy

Contact: info@tinkutara.com