Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 117029 by bemath last updated on 09/Oct/20

(x^2 +2y^2 ) dx + (4xy−y^2 ) dy = 0

(x2+2y2)dx+(4xyy2)dy=0

Answered by bemath last updated on 09/Oct/20

letting y = ϕx ⇒dy = ϕ dx+x dϕ  ⇒(x^2 +2ϕ^2 x^2 ) dx +(4x^2 ϕ−ϕ^2 x^2 )(ϕdx+x dϕ)=0  (1+2ϕ^2 ) dx +(4ϕ−ϕ^2 )(ϕdx+xdϕ)=0  ⇒(1+2ϕ^2 +4ϕ^2 −ϕ^3 )dx = x(ϕ^2 −4ϕ)dϕ  ⇒(1+6ϕ^2 −ϕ^3 )dx = x(ϕ^2 −4ϕ)dϕ  (dx/x) = (((ϕ^2 −4ϕ))/(1+6ϕ^2 −ϕ^3 )) dϕ  ∫ (dx/x) = −(1/3)∫ ((d(1+6ϕ^2 −ϕ^3 ))/(1+6ϕ^2 −ϕ^3 ))  ⇒−3∫ (dx/x) = ∫ ((d(1+6ϕ^2 −ϕ^3 ))/(1+6ϕ^2 −ϕ^3 ))  ⇒ −3(ln ∣x∣ + c ) = ln (1+6ϕ−ϕ^3 )  ⇒ ln ((1/(Cx)))^3  = ln (1+6ϕ−ϕ^3 )  ⇒1+6((y/x))−((y/x))^3 = ((1/(Cx)))^3   ⇒x^3 +6x^2 y−y^3  = K ; where K = (1/C^3 )

lettingy=φxdy=φdx+xdφ(x2+2φ2x2)dx+(4x2φφ2x2)(φdx+xdφ)=0(1+2φ2)dx+(4φφ2)(φdx+xdφ)=0(1+2φ2+4φ2φ3)dx=x(φ24φ)dφ(1+6φ2φ3)dx=x(φ24φ)dφdxx=(φ24φ)1+6φ2φ3dφdxx=13d(1+6φ2φ3)1+6φ2φ33dxx=d(1+6φ2φ3)1+6φ2φ33(lnx+c)=ln(1+6φφ3)ln(1Cx)3=ln(1+6φφ3)1+6(yx)(yx)3=(1Cx)3x3+6x2yy3=K;whereK=1C3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com