Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 117086 by mnjuly1970 last updated on 09/Oct/20

       ...nice  mathematics...   evaluate ...         lim_(n→∞) (Π_(k=1) ^n sin(((kπ)/(4n))))^(1/n) =?                    ...m.n.1970...

$$\:\:\:\:\:\:\:...{nice}\:\:{mathematics}... \\ $$$$\:{evaluate}\:... \\ $$$$\:\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{4}{n}}\right)\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$ \\ $$

Answered by Ar Brandon last updated on 09/Oct/20

Commented by mnjuly1970 last updated on 09/Oct/20

thank you very much..

$${thank}\:{you}\:{very}\:{much}.. \\ $$

Commented by Ar Brandon last updated on 09/Oct/20

You're welcome Sir ��

Answered by Dwaipayan Shikari last updated on 09/Oct/20

lim_(n→∞) (Π_(k=1) ^n sin(((kπ)/(4n))))^(1/n) =y  lim_(n→∞) (1/n)Σ_(k=1) ^n log(sin(((kπ)/(4n))))=logy  ∫_0 ^1 log(sin(((πx)/4)))=logy  (4/π)∫_0 ^(π/4) log(sint)dt  −1.27=logy  (Wolfram)  y=e^(−1.27)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{4}{n}}\right)\right)^{\frac{\mathrm{1}}{{n}}} ={y} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{log}\left({sin}\left(\frac{{k}\pi}{\mathrm{4}{n}}\right)\right)={logy} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({sin}\left(\frac{\pi{x}}{\mathrm{4}}\right)\right)={logy} \\ $$$$\frac{\mathrm{4}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({sint}\right){dt} \\ $$$$−\mathrm{1}.\mathrm{27}={logy}\:\:\left({Wolfram}\right) \\ $$$${y}={e}^{−\mathrm{1}.\mathrm{27}} \\ $$

Commented by Olaf last updated on 10/Oct/20

∫_0 ^(π/4) ln(sint)dt = −(K/2)−(π/4)ln2 exactly.  (with K = β(2) : constant of Catalan)  So limit is (1/2)e^(−((2β(2))/π))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{sin}{t}\right){dt}\:=\:−\frac{{K}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\mathrm{ln2}\:\mathrm{exactly}. \\ $$$$\left(\mathrm{with}\:{K}\:=\:\beta\left(\mathrm{2}\right)\::\:\mathrm{constant}\:\mathrm{of}\:\mathrm{Catalan}\right) \\ $$$$\mathrm{So}\:\mathrm{limit}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{\mathrm{2}\beta\left(\mathrm{2}\right)}{\pi}} \\ $$

Commented by mnjuly1970 last updated on 09/Oct/20

thank you so much.   answer :=e^((((−2G)/π)−log(2)))  ✓  recall: ∫_0 ^( (π/4)) log(sin(x))dx                   =((−G)/2) −(π/4) log(2)     m.n.1970    sincerely  yours...

$${thank}\:{you}\:{so}\:{much}. \\ $$$$\:{answer}\::={e}^{\left(\frac{−\mathrm{2}{G}}{\pi}−{log}\left(\mathrm{2}\right)\right)} \:\checkmark \\ $$$${recall}:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {log}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{−{G}}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:{log}\left(\mathrm{2}\right) \\ $$$$\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\:\:{sincerely}\:\:{yours}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by mnjuly1970 last updated on 10/Oct/20

you are right.  your solution is  simplified...

$${you}\:{are}\:{right}. \\ $$$${your}\:{solution}\:{is} \\ $$$${simplified}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com