Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 117223 by mnjuly1970 last updated on 10/Oct/20

         ... nice  mathematics...    proof ::                  Ω = (1/π)∫_(0 ) ^( ∞) [tan^(−1) ((1/x))]^2 dx=ln(2)      ...  m.n.1970...

$$\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{mathematics}... \\ $$$$\:\:{proof}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}\:} ^{\:\infty} \left[{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\right]^{\mathrm{2}} {dx}={ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:...\:\:{m}.{n}.\mathrm{1970}... \\ $$

Answered by mathmax by abdo last updated on 10/Oct/20

 =(1/π)∫_0 ^∞  arctan^2 ((1/x))dx  by parts   πI =[x arctan^2 ((1/x))]_0 ^∞ −∫_0 ^∞  x.2arctan((1/x)).×((−(1/x^2 ))/(1+(1/x^2 )))dx  =2 ∫_0 ^∞  x arctan((1/x))(dx/(1+x^2 )) =∫_0 ^∞  ((2x)/(1+x^2 )) arctan((1/x))dx  =[ln(1+x^2 )arctan((1/x))]_0 ^∞ −∫_0 ^∞   ln(1+x^2 ).((−(1/x^2 ))/(1+(1/x^2 )))dx  =∫_0 ^∞    ((ln(1+x^2 ))/(1+x^2 ))dx  =_(x=tanθ)    ∫_0 ^(π/2)  ((ln(1+tan^2 θ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/2) ln((1/(cos^2 θ)))dθ =−2 ∫_0 ^(π/2) ln(cosθ)dθ =−2(−(π/2)ln2) =πln(2)  ⇒πI =πln(2) ⇒I =ln(2)

$$\:=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \:\mathrm{arctan}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\: \\ $$$$\pi\mathrm{I}\:=\left[\mathrm{x}\:\mathrm{arctan}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}.\mathrm{2arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right).×\frac{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}\:\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx} \\ $$$$=\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right).\frac{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:=_{\mathrm{x}=\mathrm{tan}\theta} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \theta}\right)\mathrm{d}\theta\:=−\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}\theta\right)\mathrm{d}\theta\:=−\mathrm{2}\left(−\frac{\pi}{\mathrm{2}}\mathrm{ln2}\right)\:=\pi\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\pi\mathrm{I}\:=\pi\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{I}\:=\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Commented by mnjuly1970 last updated on 10/Oct/20

thank you very much mr  max .nice solution as  always..

$${thank}\:{you}\:{very}\:{much}\:{mr} \\ $$$${max}\:.{nice}\:{solution}\:{as} \\ $$$${always}.. \\ $$

Commented by mathmax by abdo last updated on 10/Oct/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com