Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117380 by mnjuly1970 last updated on 11/Oct/20

           ...  prove  that ...      Ω=∫_0 ^( ∞) (1/(2(√x)))sin(π^2 x+(1/x))dx=(1/( (√(8π))))          m.n.1970

$$\:\:\:\:\:\:\:\:\:\:\:...\:\:{prove}\:\:{that}\:... \\ $$$$\:\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{sin}\left(\pi^{\mathrm{2}} {x}+\frac{\mathrm{1}}{{x}}\right){dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{8}\pi}} \\ $$$$ \\ $$$$\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$

Commented by mindispower last updated on 11/Oct/20

nice one

$${nice}\:{one} \\ $$

Answered by mnjuly1970 last updated on 13/Oct/20

solution::  Recall ::∫_0 ^( ∞) sin(z^2 )dz =^(..fresnel  integral..) (√(π/8))           Ω =^(t=(√x))  ∫_0 ^( ∞) sin(π^2 t^2 +(1/t^2 ))dt       πΩ=∫_0 ^( ∞) πsin(π^2 t^2 +(1/t^2 ))dt  (i)        πΩ   =^(t=(1/(πu))) (1/π) ∫_(0 ) ^( ∞) πsin((1/u^2 )+π^2 u^2 )(du/u^2 )       πΩ=∫_0 ^( ∞) sin(π^2 u^2 +(1/u^2 ))(du/u^2 )   (ii)      (i)+(ii) ::                     2πΩ =∫_0 ^( ∞) (π+(1/x^2 ))sin[(πx−(1/x))^2 +2π]du      2πΩ=^(πx−(1/x)=y) ∫_(−∞) ^(  ∞) sin(y^2 )dy      2πΩ =^(Recall ) 2 (√(π/8))  ⇒ Ω =(√(1/(8π))) ✓                   ...♣M.N.july.1970♣...                          ♠peace  be  upon  you♠

$${solution}:: \\ $$$$\mathscr{R}{ecall}\:::\int_{\mathrm{0}} ^{\:\infty} {sin}\left({z}^{\mathrm{2}} \right){dz}\:\overset{..{fresnel}\:\:{integral}..} {=}\sqrt{\frac{\pi}{\mathrm{8}}} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\Omega\:\overset{{t}=\sqrt{{x}}} {=}\:\int_{\mathrm{0}} ^{\:\infty} {sin}\left(\pi^{\mathrm{2}} {t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt}\:\: \\ $$$$\:\:\:\pi\Omega=\int_{\mathrm{0}} ^{\:\infty} \pi{sin}\left(\pi^{\mathrm{2}} {t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt}\:\:\left({i}\right) \\ $$$$\:\:\:\:\:\:\pi\Omega\:\:\:\overset{{t}=\frac{\mathrm{1}}{\pi{u}}} {=}\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}\:} ^{\:\infty} \pi{sin}\left(\frac{\mathrm{1}}{{u}^{\mathrm{2}} }+\pi^{\mathrm{2}} {u}^{\mathrm{2}} \right)\frac{{du}}{{u}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\pi\Omega=\int_{\mathrm{0}} ^{\:\infty} {sin}\left(\pi^{\mathrm{2}} {u}^{\mathrm{2}} +\frac{\mathrm{1}}{{u}^{\mathrm{2}} }\right)\frac{{du}}{{u}^{\mathrm{2}} }\:\:\:\left({ii}\right) \\ $$$$\:\:\:\:\left({i}\right)+\left({ii}\right)\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\pi\Omega\:=\int_{\mathrm{0}} ^{\:\infty} \left(\pi+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){sin}\left[\left(\pi{x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}\pi\right]{du} \\ $$$$\:\:\:\:\mathrm{2}\pi\Omega\overset{\pi{x}−\frac{\mathrm{1}}{{x}}={y}} {=}\int_{−\infty} ^{\:\:\infty} {sin}\left({y}^{\mathrm{2}} \right){dy} \\ $$$$\:\:\:\:\mathrm{2}\pi\Omega\:\overset{\mathscr{R}{ecall}\:} {=}\mathrm{2}\:\sqrt{\frac{\pi}{\mathrm{8}}}\:\:\Rightarrow\:\Omega\:=\sqrt{\frac{\mathrm{1}}{\mathrm{8}\pi}}\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\clubsuit\mathscr{M}.\mathscr{N}.{july}.\mathrm{1970}\clubsuit... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\spadesuit{peace}\:\:{be}\:\:{upon}\:\:{you}\spadesuit \\ $$$$\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com