Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117403 by bemath last updated on 11/Oct/20

   ∫_0 ^1  (arc tan x)^2  dx =?

$$\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{arc}\:\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}\:=? \\ $$

Commented by MJS_new last updated on 11/Oct/20

use arctan x =((ln (1+ix) −ln (1−ix))/(2i)) ⇒  −(1/4)∫_0 ^1 (ln^2  (1+ix) −2ln (1+ix) ln (1−ix) +ln^2  (1−ix))dx  and these are solveable (by parts)

$$\mathrm{use}\:\mathrm{arctan}\:{x}\:=\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{i}{x}\right)\:−\mathrm{ln}\:\left(\mathrm{1}−\mathrm{i}{x}\right)}{\mathrm{2i}}\:\Rightarrow \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}+\mathrm{i}{x}\right)\:−\mathrm{2ln}\:\left(\mathrm{1}+\mathrm{i}{x}\right)\:\mathrm{ln}\:\left(\mathrm{1}−\mathrm{i}{x}\right)\:+\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}−\mathrm{i}{x}\right)\right){dx} \\ $$$$\mathrm{and}\:\mathrm{these}\:\mathrm{are}\:\mathrm{solveable}\:\left(\mathrm{by}\:\mathrm{parts}\right) \\ $$

Answered by mindispower last updated on 11/Oct/20

=[xarctan^2 (x)]_0 ^1 −∫_0 ^1 ((2x)/(1+x^2 ))arctan(x)dx  =(π^2 /(16))−I  let arctan(x)=t  I=−∫_0 ^(π/4) ((2tg(t)t)/(1+tg^2 (t))).(1+tg^2 (t))dt  =−2∫_0 ^(π/4) tg(t)tdt by part=−2([−tln(cost)]_0 ^(π/4)   +∫_0 ^(π/4) ln(cos(t))dt  =−(π/4)ln(2)−2∫_0 ^(π/4) ln(cos(t))dt  one way too find it  let a=∫_0 ^(π/4) ln(cos(t))dt  =∫_0 ^(π/4) (1/2)ln(sin(t)cos(t).(1/(tg(t))))dt  =∫_0 ^(π/4) ((ln(((sin(2t))/2)))/2)dt−(1/2)∫_0 ^(π/4) ln(tg(t))dt_(tg(t)=s)   2t=u⇒(1/4)∫_0 ^(π/2) ln(u)du−∫_0 ^(π/4) ln(2)du in first  ∫_0 ^(π/4) ln(tg(t))dt=∫_0 ^1 ((ln(s))/(1+s^2 ))ds=Σ∫_0 ^1 (−1)^k s^(2k+1) ln(s)ds  =−Σ(−1)^k .(1/((2k+1)^2 ))=−β(2) =−G ,G catalan constante  knowing∫_0 ^(π/2) ln(sin(t))dt give us close forme  2nd use fourier serie of   ln(cos(t))=−ln(2)−Σ_(n≥1) ((cos(2(2n−1)t))/(2n−1))  give use resulte imediatly  withe Σ_(n≥1) (((−1)^(n−1)  )/((2n−1)^2 )) =β(2)

$$=\left[{xarctan}^{\mathrm{2}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{arctan}\left({x}\right){dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−{I} \\ $$$${let}\:{arctan}\left({x}\right)={t} \\ $$$${I}=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{2}{tg}\left({t}\right){t}}{\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)}.\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right){dt} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tg}\left({t}\right){tdt}\:{by}\:{part}=−\mathrm{2}\left(\left[−{tln}\left({cost}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \right. \\ $$$$+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$$=−\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$${one}\:{way}\:{too}\:{find}\:{it} \\ $$$${let}\:{a}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\mathrm{2}}{ln}\left({sin}\left({t}\right){cos}\left({t}\right).\frac{\mathrm{1}}{{tg}\left({t}\right)}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)}{\mathrm{2}}{dt}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({tg}\left({t}\right)\right){dt}_{{tg}\left({t}\right)={s}} \\ $$$$\mathrm{2}{t}={u}\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({u}\right){du}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{2}\right){du}\:{in}\:{first} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({tg}\left({t}\right)\right){dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({s}\right)}{\mathrm{1}+{s}^{\mathrm{2}} }{ds}=\Sigma\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} {s}^{\mathrm{2}{k}+\mathrm{1}} {ln}\left({s}\right){ds} \\ $$$$=−\Sigma\left(−\mathrm{1}\right)^{{k}} .\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }=−\beta\left(\mathrm{2}\right)\:=−{G}\:,{G}\:{catalan}\:{constante} \\ $$$${knowing}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right){dt}\:{give}\:{us}\:{close}\:{forme} \\ $$$$\mathrm{2}{nd}\:{use}\:{fourier}\:{serie}\:{of}\: \\ $$$${ln}\left({cos}\left({t}\right)\right)=−{ln}\left(\mathrm{2}\right)−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right){t}\right)}{\mathrm{2}{n}−\mathrm{1}} \\ $$$${give}\:{use}\:{resulte}\:{imediatly} \\ $$$${withe}\:\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} }\:=\beta\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com