All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 11741 by uni last updated on 30/Mar/17
∫xtan2xdx=?
Answered by mrW1 last updated on 30/Mar/17
∫xtan2xdx=∫tan2xd(x22)=x2tan2x2−∫x2sinxcos3xdx=x2tan2x2+12∫x2d(1cos2x)=x2tan2x2+x22cos2x−∫xcos2xdx=x2(1+sin2x)2cos2x−∫xd(tanx)=x2(1+sin2x)2cos2x−xtanx+∫tanxdx=x2(1+sin2x)2cos2x−xtanx−ln∣cosx∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com