Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 117412 by bobhans last updated on 11/Oct/20

lim_(x→(π/6))  ((1−2sin x)/( 1−(√3) tan x)) = ?

limxπ612sinx13tanx=?

Commented by Lordose last updated on 11/Oct/20

you edited the question.?

youeditedthequestion.?

Commented by bobhans last updated on 11/Oct/20

yes. typo

yes.typo

Answered by Lordose last updated on 11/Oct/20

((1−2((1/2)))/( (√3)−((√3)/3))) = (0/((2(√3))/3)) = 0

12(12)333=0233=0

Answered by Olaf last updated on 11/Oct/20

lim_(x→(π/6)) ((−2cosx)/(−(√3)(1+tan^2 x))) = ((−2((√3)/2))/(−(√3)(1+((1/( (√3))))^2 )))  = (3/4)  (Hospital′s rule)

limxπ62cosx3(1+tan2x)=2323(1+(13)2)=34(Hospitalsrule)

Answered by bemath last updated on 11/Oct/20

 lim_(x→(π/6))  ((1−2sin x)/(1−(√3) tan x)) =?  Solution:  Without L′Hopital  letting w = x−(π/6)   lim_(w→0)  ((1−2sin (w+(π/6)))/(1−(√3) tan (w+(π/6)))) =   lim_(w→0) ((1−2(((√3)/2) sin w+(1/2)cos w))/(1−(√3)((((1/( (√3)))+tan w)/(1−(1/( (√3)))tan w))))) =  lim_(w→0) ((1−(√3) sin w−cos w)/(1−(√3)(((1+(√3) tan w)/( (√3)−tan w))))) =  lim_(w→0)  ((((√3)−tan w)(1−cos w−(√3) sin w))/( (√3)−tan w−(√3)−3 tan w)) =  (√3) lim_(w→0)  ((2sin^2 ((1/2)w)−(√3) sin w)/(−4tan w)) =  (√3) lim_(w→0)  ((2sin ((1/2)w) (sin ((1/2)w)−(√3) cos ((1/2)w)))/(−4tan w))=  ((√3)/(−4)) ×(−(√3)) = (3/4)

limxπ612sinx13tanx=?Solution:WithoutLHopitallettingw=xπ6limw012sin(w+π6)13tan(w+π6)=limw012(32sinw+12cosw)13(13+tanw113tanw)=limw013sinwcosw13(1+3tanw3tanw)=limw0(3tanw)(1cosw3sinw)3tanw33tanw=3limw02sin2(12w)3sinw4tanw=3limw02sin(12w)(sin(12w)3cos(12w))4tanw=34×(3)=34

Commented by TANMAY PANACEA last updated on 11/Oct/20

li_(x→(π/6) (/))   lim_(x→(π/6))   (2/( (√3)))(((sin(π/6)−sinx)/(tan(π/6)−tanx)))  (2/( (√3)))lim_(x→(π/6))  ((2cos((((π/6)+x)/2))sin((((π/6)−x)/2)))/((sin((π/6)−x))/(cos((π/6))cosx)))  (2/( (√3)))lim_(x→(π/6))  2cos(π/6)cosx×cos((((π/6)+x)/2))sin((((π/6)−x)/2))×(1/(2sin((((π/6)−x)/2))×coz((((π/6)−x)/2))))  =(2/( (√3)))×((√3)/2)×((√3)/2)×((√3)/2)×(1/1)=(3/4)

lixπ6limxπ623(sinπ6sinxtanπ6tanx)23limxπ62cos(π6+x2)sin(π6x2)sin(π6x)cos(π6)cosx23limxπ62cosπ6cosx×cos(π6+x2)sin(π6x2)×12sin(π6x2)×coz(π6x2)=23×32×32×32×11=34

Terms of Service

Privacy Policy

Contact: info@tinkutara.com