Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117437 by frc2crc last updated on 11/Oct/20

∫_0 ^∞ (dx/(a^3 +x^3 ))    generaly  ∫_0 ^∞ (dx/(p+x^n ))

$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{a}^{\mathrm{3}} +{x}^{\mathrm{3}} } \\ $$$$ \\ $$$${generaly} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{p}+{x}^{{n}} } \\ $$

Answered by AbduraufKodiriy last updated on 11/Oct/20

Commented by AbduraufKodiriy last updated on 11/Oct/20

Sorry for my mistakes

$$\boldsymbol{{Sorry}}\:\boldsymbol{{for}}\:\boldsymbol{{my}}\:\boldsymbol{{mistakes}} \\ $$

Answered by Bird last updated on 12/Oct/20

A_p =∫_0 ^∞   (dx/(p+x^n ))  if p>0 we hsve  A_p =∫_0 ^∞   (dx/((p^(1/n) )^n  +x^n ))  =(1/p)∫_0 ^∞   (dx/(1+((x/p^(1/n) ))^n )) we do the changement  (x/p^(1/n) ) =t ⇒A_p =(1/p)∫_0 ^∞   (1/(1+t^n ))p^(1/(n ))   dt  =p^((1/n)−1)  ∫_0 ^∞   (dt/(1+t^n )) =_(t =z^(1/n) )   =p^((1/n)−1) ∫_0 ^∞  (1/(1+z))(1/n)z^((1/n)−1) dz  =(1/n)p^((1/n)−1)  ∫_0 ^∞  (z^((1/n)−1) /(1+z))dz  A_p =(1/n)p^((1/n)−1) ×(π/(sin((π/n)))) ⇒  A_p =((π p^((1/n)−1) )/(nsin((π/n))))

$${A}_{{p}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{p}+{x}^{{n}} }\:\:{if}\:{p}>\mathrm{0}\:{we}\:{hsve} \\ $$$${A}_{{p}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({p}^{\frac{\mathrm{1}}{{n}}} \right)^{{n}} \:+{x}^{{n}} } \\ $$$$=\frac{\mathrm{1}}{{p}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+\left(\frac{{x}}{{p}^{\frac{\mathrm{1}}{{n}}} }\right)^{{n}} }\:{we}\:{do}\:{the}\:{changement} \\ $$$$\frac{{x}}{{p}^{\frac{\mathrm{1}}{{n}}} }\:={t}\:\Rightarrow{A}_{{p}} =\frac{\mathrm{1}}{{p}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{{n}} }{p}^{\frac{\mathrm{1}}{{n}\:}} \:\:{dt} \\ $$$$={p}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{{n}} }\:=_{{t}\:={z}^{\frac{\mathrm{1}}{{n}}} } \\ $$$$={p}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{1}+{z}}\frac{\mathrm{1}}{{n}}{z}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dz} \\ $$$$=\frac{\mathrm{1}}{{n}}{p}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\infty} \:\frac{{z}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{\mathrm{1}+{z}}{dz} \\ $$$${A}_{{p}} =\frac{\mathrm{1}}{{n}}{p}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} ×\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)}\:\Rightarrow \\ $$$${A}_{{p}} =\frac{\pi\:{p}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{{nsin}\left(\frac{\pi}{{n}}\right)} \\ $$

Commented by Bird last updated on 12/Oct/20

∫_0 ^∞   (dx/(a^3 +x^3 ))  we take a^3 =p and n=3  ⇒∫_0 ^∞   (dx/(a^3  +x^3 )) =((π (a)^(3((1/3)−1)) )/(3sin((π/3))))  =((π a^(−2) )/(3.((√3)/2))) =((2πa^(−2) )/(3(√3))) =((2π)/(3a^2 (√3)))

$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{a}^{\mathrm{3}} +{x}^{\mathrm{3}} }\:\:{we}\:{take}\:{a}^{\mathrm{3}} ={p}\:{and}\:{n}=\mathrm{3} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{a}^{\mathrm{3}} \:+{x}^{\mathrm{3}} }\:=\frac{\pi\:\left({a}\right)^{\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}\right)} }{\mathrm{3}{sin}\left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$=\frac{\pi\:{a}^{−\mathrm{2}} }{\mathrm{3}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\frac{\mathrm{2}\pi{a}^{−\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\:=\frac{\mathrm{2}\pi}{\mathrm{3}{a}^{\mathrm{2}} \sqrt{\mathrm{3}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com