Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 117438 by hatakekakashi1729gmailcom last updated on 11/Oct/20

       ∫_(−∞) ^( ∞) cos((1/2)πx^2 )dx

$$ \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi{x}^{\mathrm{2}} \right){dx}\:\:\:\:\: \\ $$$$ \\ $$

Answered by AbduraufKodiriy last updated on 11/Oct/20

Answered by AbduraufKodiriy last updated on 11/Oct/20

∫_(−∞) ^( ∞) cos((1/2)πx^2 )dx=2∫_0 ^( ∞) cos((1/2)πx^2 )dx= determinant ((((√(π/2))x=u)),((dx=(√(2/π))du)))=  =2(√(2/π))∫_0 ^( ∞) cos(u^2 )du=2(√(2/π))∙(√(π/8))=1

$$\int_{−\infty} ^{\:\infty} \boldsymbol{{cos}}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\boldsymbol{{x}}^{\mathrm{2}} \right)\boldsymbol{{dx}}=\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \boldsymbol{{cos}}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\boldsymbol{{x}}^{\mathrm{2}} \right)\boldsymbol{{dx}}=\begin{vmatrix}{\sqrt{\frac{\pi}{\mathrm{2}}}\boldsymbol{{x}}=\boldsymbol{{u}}}\\{\boldsymbol{{dx}}=\sqrt{\frac{\mathrm{2}}{\pi}}\boldsymbol{{du}}}\end{vmatrix}= \\ $$$$=\mathrm{2}\sqrt{\frac{\mathrm{2}}{\pi}}\int_{\mathrm{0}} ^{\:\infty} \boldsymbol{{cos}}\left(\boldsymbol{{u}}^{\mathrm{2}} \right)\boldsymbol{{du}}=\mathrm{2}\sqrt{\frac{\mathrm{2}}{\pi}}\centerdot\sqrt{\frac{\pi}{\mathrm{8}}}=\mathrm{1} \\ $$

Answered by AbduraufKodiriy last updated on 11/Oct/20

Answered by mathmax by abdo last updated on 11/Oct/20

A =∫_(−∞) ^(+∞)  cos(((πx^2 )/2))dx  changement (√(π/2))x=t give  A =∫_(−∞) ^(+∞)  cos(t^2 )(√(2/(π )))dt =(√(2/π))∫_(−∞) ^(+∞)  cos(t^2 )dt  we have ∫_(−∞) ^(+∞) cos(t^2 )dx−i∫_(−∞) ^(+∞)  sin(t^2 )dx =∫_(−∞) ^(+∞)  e^(−it^2 ) dt  =_((√i)t =z)     ∫_(−∞) ^(+∞)  e^(−z^2 ) (dz/(√i)) =((√π)/(√i)) =((√π)/e^((iπ)/4) ) =(√π)e^(−((iπ)/4))  =(√π){(1/(√2))−(i/(√2))} ⇒  ∫_(−∞) ^(+∞)  cos(t^2 )dt =((√π)/(√2)) ⇒ A =((√2)/(√π)).((√π)/(√2)) ⇒ ★A=1★

$$\mathrm{A}\:=\int_{−\infty} ^{+\infty} \:\mathrm{cos}\left(\frac{\pi\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)\mathrm{dx}\:\:\mathrm{changement}\:\sqrt{\frac{\pi}{\mathrm{2}}}\mathrm{x}=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{A}\:=\int_{−\infty} ^{+\infty} \:\mathrm{cos}\left(\mathrm{t}^{\mathrm{2}} \right)\sqrt{\frac{\mathrm{2}}{\pi\:}}\mathrm{dt}\:=\sqrt{\frac{\mathrm{2}}{\pi}}\int_{−\infty} ^{+\infty} \:\mathrm{cos}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt} \\ $$$$\mathrm{we}\:\mathrm{have}\:\int_{−\infty} ^{+\infty} \mathrm{cos}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dx}−\mathrm{i}\int_{−\infty} ^{+\infty} \:\mathrm{sin}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dx}\:=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{it}^{\mathrm{2}} } \mathrm{dt} \\ $$$$=_{\sqrt{\mathrm{i}}\mathrm{t}\:=\mathrm{z}} \:\:\:\:\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \frac{\mathrm{dz}}{\sqrt{\mathrm{i}}}\:=\frac{\sqrt{\pi}}{\sqrt{\mathrm{i}}}\:=\frac{\sqrt{\pi}}{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} }\:=\sqrt{\pi}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \:=\sqrt{\pi}\left\{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\frac{\mathrm{i}}{\sqrt{\mathrm{2}}}\right\}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\mathrm{cos}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt}\:=\frac{\sqrt{\pi}}{\sqrt{\mathrm{2}}}\:\Rightarrow\:\mathrm{A}\:=\frac{\sqrt{\mathrm{2}}}{\sqrt{\pi}}.\frac{\sqrt{\pi}}{\sqrt{\mathrm{2}}}\:\Rightarrow\:\bigstar\mathrm{A}=\mathrm{1}\bigstar \\ $$

Commented by AbduraufKodiriy last updated on 11/Oct/20

what if ((√π)/( (√i))) is equals to ((√π)/e^((5iπ)/4) ) ?

$$\boldsymbol{{what}}\:\boldsymbol{{if}}\:\frac{\sqrt{\pi}}{\:\sqrt{\boldsymbol{{i}}}}\:\boldsymbol{{is}}\:\boldsymbol{{equals}}\:\boldsymbol{{to}}\:\frac{\sqrt{\pi}}{\boldsymbol{{e}}^{\frac{\mathrm{5}\boldsymbol{{i}}\pi}{\mathrm{4}}} }\:? \\ $$

Commented by Bird last updated on 12/Oct/20

we take the principal value of  e^z  and lnz  (principal determinatin)

$${we}\:{take}\:{the}\:{principal}\:{value}\:{of} \\ $$$${e}^{{z}} \:{and}\:{lnz}\:\:\left({principal}\:{determinatin}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com