Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 117458 by Dwaipayan Shikari last updated on 11/Oct/20

(4/3).((16)/(15)).((36)/(35)).((64)/(63)).((100)/(99)).((144)/(143)).((196)/(195)).((256)/(255)).((324)/(323))......∞

$$\frac{\mathrm{4}}{\mathrm{3}}.\frac{\mathrm{16}}{\mathrm{15}}.\frac{\mathrm{36}}{\mathrm{35}}.\frac{\mathrm{64}}{\mathrm{63}}.\frac{\mathrm{100}}{\mathrm{99}}.\frac{\mathrm{144}}{\mathrm{143}}.\frac{\mathrm{196}}{\mathrm{195}}.\frac{\mathrm{256}}{\mathrm{255}}.\frac{\mathrm{324}}{\mathrm{323}}......\infty \\ $$

Answered by Olaf last updated on 11/Oct/20

P_n  = Π_(k=1) ^n (((2k)^2 )/((2k−1)(2k+1)))  P_n  = Π_(k=1) ^n (((2k)^4 )/([(2k−1)(2k)][(2k)(2k+1)]))  P_n  = ((2^(4n) n!^4 )/((2n)!(2n+1)!)) = ((2^(4n) n!^4 )/((2n)!^2 (2n+1)))  n! ∼ (√(2πn))((n/e))^n  (Stirling)  P_n  ∼ ((2^(4n) 4π^2 n^2 ((n/e))^(4n) )/( 2π(2n)[(((2n)/e))^(2n) ]^2 (2n+1)))  P_n  ∼ ((πn)/( 2n+1)) ∼ (π/2)  lim_(n→∞) P_n  = (π/2)

$$\mathrm{P}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\left(\mathrm{2}{k}\right)^{\mathrm{2}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\mathrm{P}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\left(\mathrm{2}{k}\right)^{\mathrm{4}} }{\left[\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}\right)\right]\left[\left(\mathrm{2}{k}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)\right]} \\ $$$$\mathrm{P}_{{n}} \:=\:\frac{\mathrm{2}^{\mathrm{4}{n}} {n}!^{\mathrm{4}} }{\left(\mathrm{2}{n}\right)!\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:=\:\frac{\mathrm{2}^{\mathrm{4}{n}} {n}!^{\mathrm{4}} }{\left(\mathrm{2}{n}\right)!^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$${n}!\:\sim\:\sqrt{\mathrm{2}\pi{n}}\left(\frac{{n}}{{e}}\right)^{{n}} \:\left(\mathrm{Stirling}\right) \\ $$$$\mathrm{P}_{{n}} \:\sim\:\frac{\mathrm{2}^{\mathrm{4}{n}} \mathrm{4}\pi^{\mathrm{2}} {n}^{\mathrm{2}} \left(\frac{{n}}{{e}}\right)^{\mathrm{4}{n}} }{\:\mathrm{2}\pi\left(\mathrm{2}{n}\right)\left[\left(\frac{\mathrm{2}{n}}{{e}}\right)^{\mathrm{2}{n}} \right]^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\mathrm{P}_{{n}} \:\sim\:\frac{\pi{n}}{\:\mathrm{2}{n}+\mathrm{1}}\:\sim\:\frac{\pi}{\mathrm{2}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}P}_{{n}} \:=\:\frac{\pi}{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Oct/20

Π_(n=1) ^∞ ((4n^2 )/((2n−1)(2n+1)))=y  (1/y)=Π_(n=1) ^∞ (1−(1/(4n^2 )))=Π_(n=1) ^∞ (1−(z^2 /n^2 ))      (z=(1/2))  sinzπ=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))  sin(π/2)=(π/2)Π_(n=1) ^∞ (1−(1/(4n^2 )))  1=(π/2).(1/y)  y=(π/2)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{4}{n}^{\mathrm{2}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}={y} \\ $$$$\frac{\mathrm{1}}{{y}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:\:\:\:\:\:\left({z}=\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${sinz}\pi=\pi{z}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$${sin}\frac{\pi}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{1}=\frac{\pi}{\mathrm{2}}.\frac{\mathrm{1}}{{y}} \\ $$$${y}=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com