Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117511 by Canovas last updated on 12/Oct/20

Answered by bemath last updated on 12/Oct/20

∫ (dx/(cos^2 x (4−9tan^2 x))) = ∫ ((sec^2 x)/(4−9tan^2 x)) dx  = ∫ ((d(tan x))/(4−9tan^2 x)) = ∫ (dϕ/(4−9ϕ^2 ))  =∫ (dϕ/((2+3ϕ)(2−3ϕ))) =(1/4) ∫ (1/(2−3ϕ))+(1/(2+3ϕ)) dϕ  = (1/4){−(1/3)ln(2−3ϕ)+(1/3)ln (2+3ϕ)}+c   = (1/(12)) ln ∣((2+3ϕ)/(2−3ϕ))∣+ c  = (1/(12)) ln ∣((2+3tan x)/(2−3tan x)) ∣+ c

dxcos2x(49tan2x)=sec2x49tan2xdx=d(tanx)49tan2x=dφ49φ2=dφ(2+3φ)(23φ)=14123φ+12+3φdφ=14{13ln(23φ)+13ln(2+3φ)}+c=112ln2+3φ23φ+c=112ln2+3tanx23tanx+c

Commented by Canovas last updated on 12/Oct/20

Really I haven′t understood sir

ReallyIhaventunderstoodsir

Commented by bobhans last updated on 12/Oct/20

it is by substitution sir.  ϕ = tan x so dϕ = sec^2 x dx

itisbysubstitutionsir.φ=tanxsodφ=sec2xdx

Answered by 1549442205PVT last updated on 12/Oct/20

F=∫(dx/(4cos^2 x−9sin^2 x))=∫((1/(cos^2 x))/(4−9tan^2 x))dx  =−∫((1+tan^2 x)/(9tan^2 x−4))dx.Put tanx=t  ⇒dt=(1+t^2 )dx  F=−∫(((1+t^2 )dt)/((1+t^2 )(9t^2 −4)))=+∫(dt/(9t^2 −4))  =−(1/9)∫(dt/(t^2 −(4/9)))=−(1/9)×(3/4)∫((1/(t−(2/3)))−(1/(t+(2/3))))dt  =−(1/(12))ln∣((3t−2)/(3t+2))∣+C=(1/(12))ln∣((3tanx+2)/(3tanx−2))∣+C

F=dx4cos2x9sin2x=1cos2x49tan2xdx=1+tan2x9tan2x4dx.Puttanx=tdt=(1+t2)dxF=(1+t2)dt(1+t2)(9t24)=+dt9t24=19dtt249=19×34(1t231t+23)dt=112ln3t23t+2+C=112ln3tanx+23tanx2+C

Answered by mathmax by abdo last updated on 12/Oct/20

I =∫  (dx/(4cos^2 x−9sin^2 x)) ⇒ I =∫  (dx/(4((1+cos(2x))/2)−9((1−cos(2x))/2)))  =∫  (dx/(2+2cos(2x)−(9/2)+(9/2)cos(2x))) =∫ ((2dx)/(4+4cos(2x)−9+9cos(2x)))  =∫ ((2dx)/(13cos(2x)−5)) =_(2x=t)     ∫ (dt/(13 cost−5)) =_(tan((t/2))=u)   ∫   ((2du)/((1+u^2 )(13((1−u^2 )/(1+u^2 ))−5))) =∫ ((2du)/(13(1−u^2 )−5(1+u^2 )))  =∫ ((2du)/(13−13u^2 −5−5u^2 )) =∫ ((2du)/(8−18u^2 )) =∫  (du/(4−9u^2 ))  =∫  (du/((2−3u)(2+3u))) =(1/4)∫((1/(2−3u))+(1/(2+3u)))du=(1/4)ln∣4−9u^2 ∣ +c  =(1/4)ln∣4−9tan^2 (x)∣ +c

I=dx4cos2x9sin2xI=dx41+cos(2x)291cos(2x)2=dx2+2cos(2x)92+92cos(2x)=2dx4+4cos(2x)9+9cos(2x)=2dx13cos(2x)5=2x=tdt13cost5=tan(t2)=u2du(1+u2)(131u21+u25)=2du13(1u2)5(1+u2)=2du1313u255u2=2du818u2=du49u2=du(23u)(2+3u)=14(123u+12+3u)du=14ln49u2+c=14ln49tan2(x)+c

Commented by bobhans last updated on 13/Oct/20

how do you get (1/4)∫ ((1/(2−3u)) +(1/(2+3u))) du  = (1/4)ln ∣4−9u^2 ∣ ? it not correct

howdoyouget14(123u+12+3u)du=14ln49u2?itnotcorrect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com