Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 117543 by bemath last updated on 12/Oct/20

If vector a^→ +b^→ +c^→ =0  ∣a^→ ∣=7, ∣b^→ ∣=3 and ∣c^→ ∣=5  find the angle vector a^→  and c^→  ?

$$\mathrm{If}\:\mathrm{vector}\:\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}+\overset{\rightarrow} {\mathrm{c}}=\mathrm{0} \\ $$$$\mid\overset{\rightarrow} {\mathrm{a}}\mid=\mathrm{7},\:\mid\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{3}\:\mathrm{and}\:\mid\overset{\rightarrow} {\mathrm{c}}\mid=\mathrm{5} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{vector}\:\overset{\rightarrow} {\mathrm{a}}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{c}}\:? \\ $$

Answered by bobhans last updated on 12/Oct/20

let α=∡(a^→ ,c^→ )  by Cosine of law  ⇒cos (π−α) = ((7^2 +5^2 −3^2 )/(2.7.5))  ⇒−cos α= ((65)/(70)) ; cos α = −((13)/(14))  ⇒α = cos^(−1) (−((13)/(14))) = 158.21°

$$\mathrm{let}\:\alpha=\measuredangle\left(\overset{\rightarrow} {\mathrm{a}},\overset{\rightarrow} {\mathrm{c}}\right) \\ $$$$\mathrm{by}\:\mathrm{Cosine}\:\mathrm{of}\:\mathrm{law} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\pi−\alpha\right)\:=\:\frac{\mathrm{7}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }{\mathrm{2}.\mathrm{7}.\mathrm{5}} \\ $$$$\Rightarrow−\mathrm{cos}\:\alpha=\:\frac{\mathrm{65}}{\mathrm{70}}\:;\:\mathrm{cos}\:\alpha\:=\:−\frac{\mathrm{13}}{\mathrm{14}} \\ $$$$\Rightarrow\alpha\:=\:\mathrm{cos}^{−\mathrm{1}} \left(−\frac{\mathrm{13}}{\mathrm{14}}\right)\:=\:\mathrm{158}.\mathrm{21}° \\ $$

Answered by AbduraufKodiriy last updated on 12/Oct/20

a^→ +c^→ =−b^→  ⇒ ∣a^→ +c^→ ∣=∣b^→ ∣ ⇒   ⇒ (√(∣a^→ ∣^2 +2∙a^→ ∙c^→ +∣c^→ ∣^2 ))=3  (√(7^2 +2∙∣a^→ ∣∣b^→ ∣cos(𝛟)+5^2 ))=3  74+2∙7∙5cos(𝛟)=9 ⇒ 70cos(𝛟)=−65 ⇒  ⇒ cos(𝛟)=−((13)/(14)) ⇒ 𝛟=π−arccos(((13)/(14)))  𝛟 is angle vector a^→  and c^→

$$\overset{\rightarrow} {\boldsymbol{{a}}}+\overset{\rightarrow} {\boldsymbol{{c}}}=−\overset{\rightarrow} {\boldsymbol{{b}}}\:\Rightarrow\:\mid\overset{\rightarrow} {\boldsymbol{{a}}}+\overset{\rightarrow} {\boldsymbol{{c}}}\mid=\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid\:\Rightarrow\: \\ $$$$\Rightarrow\:\sqrt{\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid^{\mathrm{2}} +\mathrm{2}\centerdot\overset{\rightarrow} {\boldsymbol{{a}}}\centerdot\overset{\rightarrow} {\boldsymbol{{c}}}+\mid\overset{\rightarrow} {\boldsymbol{{c}}}\mid^{\mathrm{2}} }=\mathrm{3} \\ $$$$\sqrt{\mathrm{7}^{\mathrm{2}} +\mathrm{2}\centerdot\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid\boldsymbol{{cos}}\left(\boldsymbol{\varphi}\right)+\mathrm{5}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\mathrm{74}+\mathrm{2}\centerdot\mathrm{7}\centerdot\mathrm{5}\boldsymbol{{cos}}\left(\boldsymbol{\varphi}\right)=\mathrm{9}\:\Rightarrow\:\mathrm{70}\boldsymbol{{cos}}\left(\boldsymbol{\varphi}\right)=−\mathrm{65}\:\Rightarrow \\ $$$$\Rightarrow\:\boldsymbol{{cos}}\left(\boldsymbol{\varphi}\right)=−\frac{\mathrm{13}}{\mathrm{14}}\:\Rightarrow\:\boldsymbol{\varphi}=\pi−\boldsymbol{{arccos}}\left(\frac{\mathrm{13}}{\mathrm{14}}\right) \\ $$$$\boldsymbol{\varphi}\:\boldsymbol{{is}}\:\boldsymbol{{angle}}\:\boldsymbol{{vector}}\:\overset{\rightarrow} {\boldsymbol{{a}}}\:\boldsymbol{{and}}\:\overset{\rightarrow} {\boldsymbol{{c}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com