Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 117606 by TANMAY PANACEA last updated on 12/Oct/20

find  sina+sin(a+b)+sin(a+2b)++..+sin{a+(n−1)b}

$${find} \\ $$$${sina}+{sin}\left({a}+{b}\right)+{sin}\left({a}+\mathrm{2}{b}\right)++..+{sin}\left\{{a}+\left({n}−\mathrm{1}\right){b}\right\} \\ $$

Answered by Dwaipayan Shikari last updated on 12/Oct/20

(1/(2sin(b/2)))(2sinasin(b/2)+2sin(a+b)sin(b/2)+.....2sin(a+(n−1)b)sin(b/2))  (1/(2sin(b/2)))(cos(a−(b/2))−cos(a+(b/2))+cos(a+(b/2))−cos(a+((3b)/2))+........cos(a+nb−((3b)/2))−cos(a+nb−(b/2)))  =(1/(2sin(b/2)))(cos(a−(b/2))−cos(a+nb−(b/2)))  =(1/(sin(b/2)))sin(a+((nb)/2)−(b/2))sin(((nb)/2))

$$\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{b}}{\mathrm{2}}}\left(\mathrm{2}{sinasin}\frac{{b}}{\mathrm{2}}+\mathrm{2}{sin}\left({a}+{b}\right){sin}\frac{{b}}{\mathrm{2}}+.....\mathrm{2}{sin}\left({a}+\left({n}−\mathrm{1}\right){b}\right){sin}\frac{{b}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{b}}{\mathrm{2}}}\left({cos}\left({a}−\frac{{b}}{\mathrm{2}}\right)−{cos}\left({a}+\frac{{b}}{\mathrm{2}}\right)+{cos}\left({a}+\frac{{b}}{\mathrm{2}}\right)−{cos}\left({a}+\frac{\mathrm{3}{b}}{\mathrm{2}}\right)+........{cos}\left({a}+{nb}−\frac{\mathrm{3}{b}}{\mathrm{2}}\right)−{cos}\left({a}+{nb}−\frac{{b}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{b}}{\mathrm{2}}}\left({cos}\left({a}−\frac{{b}}{\mathrm{2}}\right)−{cos}\left({a}+{nb}−\frac{{b}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{sin}\frac{{b}}{\mathrm{2}}}{sin}\left({a}+\frac{{nb}}{\mathrm{2}}−\frac{{b}}{\mathrm{2}}\right){sin}\left(\frac{{nb}}{\mathrm{2}}\right) \\ $$

Commented by TANMAY PANACEA last updated on 12/Oct/20

bah darun...

$${bah}\:{darun}... \\ $$

Commented by Dwaipayan Shikari last updated on 12/Oct/20

ধন্যবাদ

Commented by Dwaipayan Shikari last updated on 12/Oct/20

If b→0  (1/(sin(b/2)))sin(a+((nb)/2)−(b/2))sin(((nb)/2))=((nb)/2).(1/(b/2))sin(a)=nsina  Which is true

$${If}\:{b}\rightarrow\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{sin}\frac{{b}}{\mathrm{2}}}{sin}\left({a}+\frac{{nb}}{\mathrm{2}}−\frac{{b}}{\mathrm{2}}\right){sin}\left(\frac{{nb}}{\mathrm{2}}\right)=\frac{{nb}}{\mathrm{2}}.\frac{\mathrm{1}}{\frac{{b}}{\mathrm{2}}}{sin}\left({a}\right)={nsina} \\ $$$${Which}\:{is}\:{true} \\ $$

Answered by mathmax by abdo last updated on 12/Oct/20

A_n =Σ_(k=0) ^(n−1) sin(a+kb) ⇒ A_n =Im(Σ_(k=0) ^(n−1) e^(i(a+kb)) )  Σ_(k=0 ) ^(n−1)  e^(i(a+kb))  =e^(ia)   Σ_(k=0) ^(n−1)  (e^(ib) )^k  =e^(ia) ×((1−(e^(ib) )^n )/(1−e^(ib) ))  =e^(ia) ×((1−e^(inb) )/(1−cosb−isinb)) =e^(ia) ×((1−cos(nb)−isin(nb))/(1−cosb−isinb))  =e^(ia) .((2sin^2 (((nb)/2))−2isin(((nb)/2))cos(((nb)/2)))/(2sin^2 ((b/2))−2isin((b/2))cos((b/2))))  =e^(ia) ×((−isin(((nb)/2)) e^(i((nb)/2)) )/(−isin((b/2))e^((ib)/2) )) =((sin(((nb)/2)))/(sin((b/2))))e^(ia) ×e^(i(((n−1)b)/2))   =((sin(((nb)/2)))/(sin((b/2))))× e^(i(a+(((n−1)b)/2)))  ⇒A_n =((sin(((nb)/2)))/(sin((b/2))))×sin(a+(((n−1)b)/2))

$$\mathrm{A}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \mathrm{sin}\left(\mathrm{a}+\mathrm{kb}\right)\:\Rightarrow\:\mathrm{A}_{\mathrm{n}} =\mathrm{Im}\left(\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{\mathrm{i}\left(\mathrm{a}+\mathrm{kb}\right)} \right) \\ $$$$\sum_{\mathrm{k}=\mathrm{0}\:} ^{\mathrm{n}−\mathrm{1}} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{a}+\mathrm{kb}\right)} \:=\mathrm{e}^{\mathrm{ia}} \:\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \:\left(\mathrm{e}^{\mathrm{ib}} \right)^{\mathrm{k}} \:=\mathrm{e}^{\mathrm{ia}} ×\frac{\mathrm{1}−\left(\mathrm{e}^{\mathrm{ib}} \right)^{\mathrm{n}} }{\mathrm{1}−\mathrm{e}^{\mathrm{ib}} } \\ $$$$=\mathrm{e}^{\mathrm{ia}} ×\frac{\mathrm{1}−\mathrm{e}^{\mathrm{inb}} }{\mathrm{1}−\mathrm{cosb}−\mathrm{isinb}}\:=\mathrm{e}^{\mathrm{ia}} ×\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{nb}\right)−\mathrm{isin}\left(\mathrm{nb}\right)}{\mathrm{1}−\mathrm{cosb}−\mathrm{isinb}} \\ $$$$=\mathrm{e}^{\mathrm{ia}} .\frac{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{nb}}{\mathrm{2}}\right)−\mathrm{2isin}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)}{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{b}}{\mathrm{2}}\right)−\mathrm{2isin}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)} \\ $$$$=\mathrm{e}^{\mathrm{ia}} ×\frac{−\mathrm{isin}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)\:\mathrm{e}^{\mathrm{i}\frac{\mathrm{nb}}{\mathrm{2}}} }{−\mathrm{isin}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)\mathrm{e}^{\frac{\mathrm{ib}}{\mathrm{2}}} }\:=\frac{\mathrm{sin}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)}\mathrm{e}^{\mathrm{ia}} ×\mathrm{e}^{\mathrm{i}\frac{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{b}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{sin}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)}×\:\mathrm{e}^{\mathrm{i}\left(\mathrm{a}+\frac{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{b}}{\mathrm{2}}\right)} \:\Rightarrow\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{sin}\left(\frac{\mathrm{nb}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{b}}{\mathrm{2}}\right)}×\mathrm{sin}\left(\mathrm{a}+\frac{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{b}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com