Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 117646 by bemath last updated on 13/Oct/20

Commented by bemath last updated on 13/Oct/20

without L′Hopital

$$\mathrm{without}\:\mathrm{L}'\mathrm{Hopital} \\ $$

Answered by bobhans last updated on 13/Oct/20

lim_(x→1)  [((1−2x+(√x))/(1−(√(2x−x^2 )))) ]×((1+(√(2x−x^2 )))/(1+(√(2x−x^2 )))) =  2 ×lim_(x→1)  (((1+(√x))−2x)/(x^2 −2x+1)) = 2×lim_(x→1)  (((1+(√x))−2x)/((x−1)^2 ))  2×lim_(x→1)  (((1+(√x))−2x)/(((√x)+1)^2 ((√x)−1)^2 )) = (1/2)×lim_(x→1) (((1+(√x))−2x)/(((√x)−1)^2 ))  −(1/2)×lim_(x→1)  ((2((√x))^2 −(√x)−1)/(((√x)−1)^2 )) =  −(1/2)×lim_(x→1)  (((2(√x) +1)((√x)−1))/(((√x)−1)^2 )) =  −(1/2) lim_(x→1) ((2(√x)+1)/( (√x)−1)) = ±∞ or doesnot exist

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left[\frac{\mathrm{1}−\mathrm{2x}+\sqrt{\mathrm{x}}}{\mathrm{1}−\sqrt{\mathrm{2x}−\mathrm{x}^{\mathrm{2}} }}\:\right]×\frac{\mathrm{1}+\sqrt{\mathrm{2x}−\mathrm{x}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{\mathrm{2x}−\mathrm{x}^{\mathrm{2}} }}\:= \\ $$$$\mathrm{2}\:×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{x}}\right)−\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{1}}\:=\:\mathrm{2}×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{x}}\right)−\mathrm{2x}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{x}}\right)−\mathrm{2x}}{\left(\sqrt{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{2}} \left(\sqrt{\mathrm{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\sqrt{\mathrm{x}}\right)−\mathrm{2x}}{\left(\sqrt{\mathrm{x}}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} −\sqrt{\mathrm{x}}−\mathrm{1}}{\left(\sqrt{\mathrm{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{2}\sqrt{\mathrm{x}}\:+\mathrm{1}\right)\left(\sqrt{\mathrm{x}}−\mathrm{1}\right)}{\left(\sqrt{\mathrm{x}}−\mathrm{1}\right)^{\mathrm{2}} }\:= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{2}\sqrt{\mathrm{x}}+\mathrm{1}}{\:\sqrt{\mathrm{x}}−\mathrm{1}}\:=\:\pm\infty\:\mathrm{or}\:\mathrm{doesnot}\:\mathrm{exist} \\ $$

Answered by MJS_new last updated on 13/Oct/20

0≤x<1 ⇒ 1−2x+(√x)>0∧1−(√(2x−x^2 ))>0  1<x≤2 ⇒ 1−2x+(√x)<0∧1−(√(2x−x^2 ))>0  ⇒  lim_(x→1^− )  ((1−2x+(√x))/(1−(√(2x−x^2 )))) >0  lim_(x→1^+ )  ((1−2x+(√x))/(1−(√(2x−x^2 )))) <0  ⇒ the limit doesn′t exist

$$\mathrm{0}\leqslant{x}<\mathrm{1}\:\Rightarrow\:\mathrm{1}−\mathrm{2}{x}+\sqrt{{x}}>\mathrm{0}\wedge\mathrm{1}−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }>\mathrm{0} \\ $$$$\mathrm{1}<{x}\leqslant\mathrm{2}\:\Rightarrow\:\mathrm{1}−\mathrm{2}{x}+\sqrt{{x}}<\mathrm{0}\wedge\mathrm{1}−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }>\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2}{x}+\sqrt{{x}}}{\mathrm{1}−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }}\:>\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2}{x}+\sqrt{{x}}}{\mathrm{1}−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }}\:<\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{limit}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$

Commented by bemath last updated on 13/Oct/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com