Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 117708 by mr W last updated on 13/Oct/20

Find the number of all 5 digit  numbers x_1 x_2 x_3 x_4 x_5  with  x_1 ≥x_2 ≥x_3 ≥x_4 ≥x_5 .

$${Find}\:{the}\:{number}\:{of}\:{all}\:\mathrm{5}\:{digit} \\ $$$${numbers}\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} {x}_{\mathrm{5}} \:{with} \\ $$$${x}_{\mathrm{1}} \geqslant{x}_{\mathrm{2}} \geqslant{x}_{\mathrm{3}} \geqslant{x}_{\mathrm{4}} \geqslant{x}_{\mathrm{5}} . \\ $$

Commented by prakash jain last updated on 13/Oct/20

(Σ_(j=0) ^4 ^4 C_j ×^(10) C_(j+1) )−1  ^4 C_j  indicates partion of 5 into j+1 parts.  ^(10) C_(j+1)  way to choose j+1 digits.    −1 to exclude all zero cases  for n digits  (Σ_(j=0) ^(n−1)  ^(n−1) C_j ×^(10) C_(j+1) )−1

$$\left(\underset{{j}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}\:^{\mathrm{4}} {C}_{{j}} ×^{\mathrm{10}} {C}_{{j}+\mathrm{1}} \right)−\mathrm{1} \\ $$$$\:^{\mathrm{4}} {C}_{{j}} \:\mathrm{indicates}\:\mathrm{partion}\:\mathrm{of}\:\mathrm{5}\:\mathrm{into}\:{j}+\mathrm{1}\:\mathrm{parts}. \\ $$$$\:^{\mathrm{10}} {C}_{{j}+\mathrm{1}} \:\mathrm{way}\:\mathrm{to}\:\mathrm{choose}\:{j}+\mathrm{1}\:\mathrm{digits}. \\ $$$$\:\:−\mathrm{1}\:\mathrm{to}\:\mathrm{exclude}\:\mathrm{all}\:\mathrm{zero}\:\mathrm{cases} \\ $$$$\mathrm{for}\:{n}\:\mathrm{digits} \\ $$$$\left(\underset{{j}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\:^{{n}−\mathrm{1}} {C}_{{j}} ×^{\mathrm{10}} {C}_{{j}+\mathrm{1}} \right)−\mathrm{1} \\ $$

Commented by prakash jain last updated on 13/Oct/20

Distribution calculation  5 digits  •  •  •  •  •  We can 5 digits in j+1 number of  part by placing j bar in space between  dots.  for a 5 digit number formed with  2 unique digits we have following  ways  1d_1 +4d_2 =•∣••••  1d_1 +4d_2 ,2d_1 +3d_2 ,3d_1 +2d_2 ,4d_1 +d_2   = ^4 C_1   there are^(10) C_2  ways to select 2 digits.    similar for j digits  ^4 C_j  ways to decide which digit is repeated    how many time.   ^(10) C_j  ways to select j digits.  once we have selected  digits  and decided how many times  each digit is repeated then  there is only one unique way of  writing sorted number.  so numbers of way a 5 digit number  can be written using j different digits  in the required sorted order is.  ^4 C_(j−1) ×^(10) C_j   we need to subtract 1 for case where  a single digit is repeated 5 times.  so 5 digit numbers in required  sorted order are 2001.

$$\mathrm{Distribution}\:\mathrm{calculation} \\ $$$$\mathrm{5}\:\mathrm{digits} \\ $$$$\bullet\:\:\bullet\:\:\bullet\:\:\bullet\:\:\bullet \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{5}\:\mathrm{digits}\:\mathrm{in}\:{j}+\mathrm{1}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{part}\:\mathrm{by}\:\mathrm{placing}\:{j}\:\mathrm{bar}\:\mathrm{in}\:\mathrm{space}\:\mathrm{between} \\ $$$$\mathrm{dots}. \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{5}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{formed}\:\mathrm{with} \\ $$$$\mathrm{2}\:\mathrm{unique}\:\mathrm{digits}\:\mathrm{we}\:\mathrm{have}\:\mathrm{following} \\ $$$$\mathrm{ways} \\ $$$$\mathrm{1}{d}_{\mathrm{1}} +\mathrm{4}{d}_{\mathrm{2}} =\bullet\mid\bullet\bullet\bullet\bullet \\ $$$$\mathrm{1d}_{\mathrm{1}} +\mathrm{4d}_{\mathrm{2}} ,\mathrm{2}{d}_{\mathrm{1}} +\mathrm{3}{d}_{\mathrm{2}} ,\mathrm{3}{d}_{\mathrm{1}} +\mathrm{2}{d}_{\mathrm{2}} ,\mathrm{4}{d}_{\mathrm{1}} +{d}_{\mathrm{2}} \\ $$$$=\:\:^{\mathrm{4}} {C}_{\mathrm{1}} \\ $$$$\mathrm{there}\:\mathrm{are}\:^{\mathrm{10}} {C}_{\mathrm{2}} \:\mathrm{ways}\:\mathrm{to}\:\mathrm{select}\:\mathrm{2}\:\mathrm{digits}. \\ $$$$ \\ $$$$\mathrm{similar}\:\mathrm{for}\:{j}\:\mathrm{digits} \\ $$$$\:^{\mathrm{4}} {C}_{{j}} \:\mathrm{ways}\:\mathrm{to}\:\mathrm{decide}\:\mathrm{which}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{repeated} \\ $$$$\:\:\mathrm{how}\:\mathrm{many}\:\mathrm{time}. \\ $$$$\:\:^{\mathrm{10}} {C}_{{j}} \:\mathrm{ways}\:\mathrm{to}\:\mathrm{select}\:{j}\:\mathrm{digits}. \\ $$$$\mathrm{once}\:\mathrm{we}\:\mathrm{have}\:\mathrm{selected}\:\:\mathrm{digits} \\ $$$$\mathrm{and}\:\mathrm{decided}\:\mathrm{how}\:\mathrm{many}\:\mathrm{times} \\ $$$$\mathrm{each}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{repeated}\:\mathrm{then} \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{unique}\:\mathrm{way}\:\mathrm{of} \\ $$$$\mathrm{writing}\:\mathrm{sorted}\:\mathrm{number}. \\ $$$$\mathrm{so}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{way}\:\mathrm{a}\:\mathrm{5}\:\mathrm{digit}\:\mathrm{number} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{using}\:{j}\:\mathrm{different}\:\mathrm{digits} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{required}\:\mathrm{sorted}\:\mathrm{order}\:\mathrm{is}. \\ $$$$\:^{\mathrm{4}} {C}_{{j}−\mathrm{1}} ×^{\mathrm{10}} {C}_{{j}} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{subtract}\:\mathrm{1}\:\mathrm{for}\:\mathrm{case}\:\mathrm{where} \\ $$$$\mathrm{a}\:\mathrm{single}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{repeated}\:\mathrm{5}\:\mathrm{times}. \\ $$$$\mathrm{so}\:\mathrm{5}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{required} \\ $$$$\mathrm{sorted}\:\mathrm{order}\:\mathrm{are}\:\mathrm{2001}. \\ $$

Commented by mr W last updated on 13/Oct/20

nice solution sir!

$${nice}\:{solution}\:{sir}! \\ $$

Answered by 1549442205PVT last updated on 14/Oct/20

For convenient we write abcde^(−)  instead  of x_1 x_2 x_3 x_4 x_5 ^(−) and ∣abcde∣−number of  numbers of form abcde^(−)   We solve the problem in turn for cases  1)How many are there the two−digit  numbers   ab^(−)  can be formed from the digits  1,..,9 such that a≥b  This case,it  is easy to see in the total  we can establish p=C_9 ^2 +9=45 ones  2)The case abc^(−) .  When 9 at first place we have  C_8 ^2 +8+9=45 numbers of form 9bc^(−)   Similarly,∣8bc^(−) ∣= C_7 ^2 +7+8=36 ones  ,.....,∣5bc^(−) ∣=C_4 ^2 +4+5=15 ones  ∣4bc^(−) ∣=C_3 ^2 +3+4=10;∣3bc^(−) ∣=C_2 ^2 +2+3=6  ∣2bc∣=3,∣1bc∣=1  .Hence,in total we obtain  ∣abc∣=∣9bc∣+∣8bc∣+∣7bc∣+6bc∣+∣5bc∣  +∣4bc∣+∣3bc∣+∣2bc∣+∣1bc∣=  45+36+28+21+15+10+6+4=165 numbers   3)The case abcd^(−)   ∣abcd∣=∣9bcd∣+∣8bcd∣+...+∣3bcd∣+∣2bcd∣+∣1bcd∣  From above result we get:  ∣9bcd∣=∣9cd∣+∣8cd∣...+∣1cd∣=45+36  28+21+15+10+6+4=165  ∣8bcd∣=∣8cd∣+...+∣1cd∣=165−45=120  ∣7bcd∣=∣8bcd∣−∣8cd∣=120−36=84  ∣6bcd∣=∣7bcd∣−∣7cd∣=84−28=56  ∣5bcd∣=∣6bcd∣−∣6cd∣=56−21=35  ∣4bcd∣=∣5bcd∣−∣5cd∣=35−15=20   ∣3bcd^(−) ∣= ∣4bcd∣−∣4cd∣=20−10=10  ∣2bcd∣=∣3bcd∣−∣3cd∣=10−6=4  ∣1bcd∣=∣2bcd∣−∣2cd∣=4−3=1  Hence,in total we obtain   165+120+84+56+35+20+10+5=495  4)The case abcde^(−)    a)When 9 at first we have 9bcde^(−)   From thepart 2)above we get  ∣99cde^(−) ∣=∣9de∣+∣8de∣+∣7de∣+∣6de∣+∣5de∣+∣4de∣+∣3de∣  +∣5de∣+∣4de∣+∣3de∣+∣2de∣+∣1de∣  =45+36+28+21+15+10+6+4=165  ∣98cde∣=∣99cde∣−∣9de∣=165−45=120  ∣97cde∣=∣98cde∣−∣8de∣=120−36=84  ∣96cde∣=∣97cde∣−∣7de∣=84−28=56  ∣95cde∣=56−21=35,∣94cde∣=35−15=20  ∣93cde∣=10;∣92cde∣=4;∣91cde∣=1  .Hence,in the total we get  165+120+84+56+35+20+10+4+1  =495 numbers of forms 9bcde^(−)   b)When 8 at the first place we have  ∣8bcde^(−) ∣=∣88cde∣+∣87cde∣+...+∣81cde∣  =∣98cde∣+∣97cde∣+...+∣91cde∣  =∣9bcde∣−∣9cde∣=495−165=330  Brcause:See the formulas of part2)  ∣88cde^(−) ∣=∣8de∣+∣7de∣+∣6de∣+∣5de∣  +∣4de∣+∣3de∣+∣2de∣+∣1de∣=165−45=120  ∣87cde∣=120−36=84  ∣86cde∣=84−28=56  ∣85cde∣=56−21=35  ∣84cde∣=35−15=20,∣83cde∣=10  ∣82cde∣=4,∣81cde∣=1,so in the total have   120+84+56+35+20+10+5=330  c)The case 7bcde^(−)  we get (see the part3)  ∣7bcde∣=∣8bcde∣−∣8cde∣  ∣=330−120=210 numbers  d)The case 6bcde^(−) ;∣6bcde∣=  ∣7bcde∣−∣7cde∣=210−84=126  e)The case5bcde^(−) ;∣ 5bcde^(−) ∣=  ∣6bcde∣−∣6cde∣=126−56=70  f)The case 4bcde^(−)  we get  ∣4bcde∣=70−35=35 numbers  g)The case 3bcde we get  ∣3bcde∣=35−20=15 numbers  ∣∣2bcde∣=15−10=5,∣1bcde∣=1  Finaly,in total we get  495+330+210+126+70+35+15+6=  1287 numbers of form abcde satisfy   the condition a≥b≥c≥d≥e

$$\mathrm{For}\:\mathrm{convenient}\:\mathrm{we}\:\mathrm{write}\:\overline {\mathrm{abcde}}\:\mathrm{instead} \\ $$$$\mathrm{of}\overline {\:\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} \mathrm{x}_{\mathrm{3}} \mathrm{x}_{\mathrm{4}} \mathrm{x}_{\mathrm{5}} }\mathrm{and}\:\mid\mathrm{abcde}\mid−\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{numbers}\:\mathrm{of}\:\mathrm{form}\:\overline {\mathrm{abcde}} \\ $$$$\mathrm{We}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{in}\:\mathrm{turn}\:\mathrm{for}\:\mathrm{cases} \\ $$$$\left.\mathrm{1}\right)\mathrm{How}\:\mathrm{many}\:\mathrm{are}\:\mathrm{there}\:\mathrm{the}\:\mathrm{two}−\mathrm{digit}\:\:\mathrm{numbers}\: \\ $$$$\overline {\mathrm{ab}}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digits} \\ $$$$\mathrm{1},..,\mathrm{9}\:\mathrm{such}\:\mathrm{that}\:\mathrm{a}\geqslant\mathrm{b} \\ $$$$\mathrm{This}\:\mathrm{case},\mathrm{it}\:\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{in}\:\mathrm{the}\:\mathrm{total} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{establish}\:\mathrm{p}=\mathrm{C}_{\mathrm{9}} ^{\mathrm{2}} +\mathrm{9}=\mathrm{45}\:\mathrm{ones} \\ $$$$\left.\mathrm{2}\right)\mathrm{The}\:\mathrm{case}\overline {\:\mathrm{abc}}. \\ $$$$\mathrm{When}\:\mathrm{9}\:\mathrm{at}\:\mathrm{first}\:\mathrm{place}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{C}_{\mathrm{8}} ^{\mathrm{2}} +\mathrm{8}+\mathrm{9}=\mathrm{45}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{form}\:\overline {\mathrm{9bc}} \\ $$$$\mathrm{Similarly},\mid\overline {\mathrm{8bc}}\mid=\:\mathrm{C}_{\mathrm{7}} ^{\mathrm{2}} +\mathrm{7}+\mathrm{8}=\mathrm{36}\:\mathrm{ones} \\ $$$$,.....,\mid\overline {\mathrm{5bc}}\mid=\mathrm{C}_{\mathrm{4}} ^{\mathrm{2}} +\mathrm{4}+\mathrm{5}=\mathrm{15}\:\mathrm{ones} \\ $$$$\mid\overline {\mathrm{4bc}}\mid=\mathrm{C}_{\mathrm{3}} ^{\mathrm{2}} +\mathrm{3}+\mathrm{4}=\mathrm{10};\mid\overline {\mathrm{3bc}}\mid=\mathrm{C}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}+\mathrm{3}=\mathrm{6} \\ $$$$\mid\mathrm{2bc}\mid=\mathrm{3},\mid\mathrm{1bc}\mid=\mathrm{1} \\ $$$$.\mathrm{Hence},\mathrm{in}\:\mathrm{total}\:\mathrm{we}\:\mathrm{obtain} \\ $$$$\mid\mathrm{abc}\mid=\mid\mathrm{9bc}\mid+\mid\mathrm{8bc}\mid+\mid\mathrm{7bc}\mid+\mathrm{6bc}\mid+\mid\mathrm{5bc}\mid \\ $$$$+\mid\mathrm{4bc}\mid+\mid\mathrm{3bc}\mid+\mid\mathrm{2bc}\mid+\mid\mathrm{1bc}\mid= \\ $$$$\mathrm{45}+\mathrm{36}+\mathrm{28}+\mathrm{21}+\mathrm{15}+\mathrm{10}+\mathrm{6}+\mathrm{4}=\mathrm{165}\:\mathrm{numbers}\: \\ $$$$\left.\mathrm{3}\right)\mathrm{The}\:\mathrm{case}\:\overline {\mathrm{abcd}} \\ $$$$\mid\mathrm{abcd}\mid=\mid\mathrm{9bcd}\mid+\mid\mathrm{8bcd}\mid+...+\mid\mathrm{3bcd}\mid+\mid\mathrm{2bcd}\mid+\mid\mathrm{1bcd}\mid \\ $$$$\mathrm{From}\:\mathrm{above}\:\mathrm{result}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mid\mathrm{9bcd}\mid=\mid\mathrm{9cd}\mid+\mid\mathrm{8cd}\mid...+\mid\mathrm{1cd}\mid=\mathrm{45}+\mathrm{36} \\ $$$$\mathrm{28}+\mathrm{21}+\mathrm{15}+\mathrm{10}+\mathrm{6}+\mathrm{4}=\mathrm{165} \\ $$$$\mid\mathrm{8bcd}\mid=\mid\mathrm{8cd}\mid+...+\mid\mathrm{1cd}\mid=\mathrm{165}−\mathrm{45}=\mathrm{120} \\ $$$$\mid\mathrm{7bcd}\mid=\mid\mathrm{8bcd}\mid−\mid\mathrm{8cd}\mid=\mathrm{120}−\mathrm{36}=\mathrm{84} \\ $$$$\mid\mathrm{6bcd}\mid=\mid\mathrm{7bcd}\mid−\mid\mathrm{7cd}\mid=\mathrm{84}−\mathrm{28}=\mathrm{56} \\ $$$$\mid\mathrm{5bcd}\mid=\mid\mathrm{6bcd}\mid−\mid\mathrm{6cd}\mid=\mathrm{56}−\mathrm{21}=\mathrm{35} \\ $$$$\mid\mathrm{4bcd}\mid=\mid\mathrm{5bcd}\mid−\mid\mathrm{5cd}\mid=\mathrm{35}−\mathrm{15}=\mathrm{20} \\ $$$$\:\mid\overline {\mathrm{3bcd}}\mid=\:\mid\mathrm{4bcd}\mid−\mid\mathrm{4cd}\mid=\mathrm{20}−\mathrm{10}=\mathrm{10} \\ $$$$\mid\mathrm{2bcd}\mid=\mid\mathrm{3bcd}\mid−\mid\mathrm{3cd}\mid=\mathrm{10}−\mathrm{6}=\mathrm{4} \\ $$$$\mid\mathrm{1bcd}\mid=\mid\mathrm{2bcd}\mid−\mid\mathrm{2cd}\mid=\mathrm{4}−\mathrm{3}=\mathrm{1} \\ $$$$\mathrm{Hence},\mathrm{in}\:\mathrm{total}\:\mathrm{we}\:\mathrm{obtain}\: \\ $$$$\mathrm{165}+\mathrm{120}+\mathrm{84}+\mathrm{56}+\mathrm{35}+\mathrm{20}+\mathrm{10}+\mathrm{5}=\mathrm{495} \\ $$$$\left.\mathrm{4}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\overline {\:\boldsymbol{\mathrm{abcde}}}\: \\ $$$$\left.\mathrm{a}\right)\mathrm{When}\:\mathrm{9}\:\mathrm{at}\:\mathrm{first}\:\mathrm{we}\:\mathrm{have}\:\overline {\mathrm{9bcde}} \\ $$$$\left.\mathrm{From}\:\mathrm{thepart}\:\mathrm{2}\right)\mathrm{above}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mid\overline {\mathrm{99cde}}\mid=\mid\mathrm{9de}\mid+\mid\mathrm{8de}\mid+\mid\mathrm{7de}\mid+\mid\mathrm{6de}\mid+\mid\mathrm{5de}\mid+\mid\mathrm{4de}\mid+\mid\mathrm{3de}\mid \\ $$$$+\mid\mathrm{5de}\mid+\mid\mathrm{4de}\mid+\mid\mathrm{3de}\mid+\mid\mathrm{2de}\mid+\mid\mathrm{1de}\mid \\ $$$$=\mathrm{45}+\mathrm{36}+\mathrm{28}+\mathrm{21}+\mathrm{15}+\mathrm{10}+\mathrm{6}+\mathrm{4}=\mathrm{165} \\ $$$$\mid\mathrm{98cde}\mid=\mid\mathrm{99cde}\mid−\mid\mathrm{9de}\mid=\mathrm{165}−\mathrm{45}=\mathrm{120} \\ $$$$\mid\mathrm{97cde}\mid=\mid\mathrm{98cde}\mid−\mid\mathrm{8de}\mid=\mathrm{120}−\mathrm{36}=\mathrm{84} \\ $$$$\mid\mathrm{96cde}\mid=\mid\mathrm{97cde}\mid−\mid\mathrm{7de}\mid=\mathrm{84}−\mathrm{28}=\mathrm{56} \\ $$$$\mid\mathrm{95cde}\mid=\mathrm{56}−\mathrm{21}=\mathrm{35},\mid\mathrm{94cde}\mid=\mathrm{35}−\mathrm{15}=\mathrm{20} \\ $$$$\mid\mathrm{93cde}\mid=\mathrm{10};\mid\mathrm{92cde}\mid=\mathrm{4};\mid\mathrm{91cde}\mid=\mathrm{1} \\ $$$$.\mathrm{Hence},\mathrm{in}\:\mathrm{the}\:\mathrm{total}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{165}+\mathrm{120}+\mathrm{84}+\mathrm{56}+\mathrm{35}+\mathrm{20}+\mathrm{10}+\mathrm{4}+\mathrm{1} \\ $$$$=\mathrm{495}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{forms}\:\overline {\mathrm{9bcde}} \\ $$$$\left.\mathrm{b}\right)\mathrm{When}\:\mathrm{8}\:\mathrm{at}\:\mathrm{the}\:\mathrm{first}\:\mathrm{place}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mid\overline {\mathrm{8bcde}}\mid=\mid\mathrm{88cde}\mid+\mid\mathrm{87cde}\mid+...+\mid\mathrm{81cde}\mid \\ $$$$=\mid\mathrm{98cde}\mid+\mid\mathrm{97cde}\mid+...+\mid\mathrm{91cde}\mid \\ $$$$=\mid\mathrm{9bcde}\mid−\mid\mathrm{9cde}\mid=\mathrm{495}−\mathrm{165}=\mathrm{330} \\ $$$$\left.\mathrm{Brcause}:\mathrm{See}\:\mathrm{the}\:\mathrm{formulas}\:\mathrm{of}\:\mathrm{part2}\right) \\ $$$$\mid\overline {\mathrm{88cde}}\mid=\mid\mathrm{8de}\mid+\mid\mathrm{7de}\mid+\mid\mathrm{6de}\mid+\mid\mathrm{5de}\mid \\ $$$$+\mid\mathrm{4de}\mid+\mid\mathrm{3de}\mid+\mid\mathrm{2de}\mid+\mid\mathrm{1de}\mid=\mathrm{165}−\mathrm{45}=\mathrm{120} \\ $$$$\mid\mathrm{87cde}\mid=\mathrm{120}−\mathrm{36}=\mathrm{84} \\ $$$$\mid\mathrm{86cde}\mid=\mathrm{84}−\mathrm{28}=\mathrm{56} \\ $$$$\mid\mathrm{85cde}\mid=\mathrm{56}−\mathrm{21}=\mathrm{35} \\ $$$$\mid\mathrm{84cde}\mid=\mathrm{35}−\mathrm{15}=\mathrm{20},\mid\mathrm{83cde}\mid=\mathrm{10} \\ $$$$\mid\mathrm{82cde}\mid=\mathrm{4},\mid\mathrm{81cde}\mid=\mathrm{1},\mathrm{so}\:\mathrm{in}\:\mathrm{the}\:\mathrm{total}\:\mathrm{have}\: \\ $$$$\mathrm{120}+\mathrm{84}+\mathrm{56}+\mathrm{35}+\mathrm{20}+\mathrm{10}+\mathrm{5}=\mathrm{330} \\ $$$$\left.\mathrm{c}\right)\mathrm{The}\:\mathrm{case}\:\overline {\mathrm{7bcde}}\:\mathrm{we}\:\mathrm{get}\:\left(\mathrm{see}\:\mathrm{the}\:\mathrm{part3}\right) \\ $$$$\mid\mathrm{7bcde}\mid=\mid\mathrm{8bcde}\mid−\mid\mathrm{8cde}\mid \\ $$$$\mid=\mathrm{330}−\mathrm{120}=\mathrm{210}\:\mathrm{numbers} \\ $$$$\left.\mathrm{d}\right)\mathrm{The}\:\mathrm{case}\:\overline {\mathrm{6bcde}};\mid\mathrm{6bcde}\mid= \\ $$$$\mid\mathrm{7bcde}\mid−\mid\mathrm{7cde}\mid=\mathrm{210}−\mathrm{84}=\mathrm{126} \\ $$$$\left.\mathrm{e}\right)\mathrm{The}\:\mathrm{case}\overline {\mathrm{5bcde}};\mid\:\overline {\mathrm{5bcde}}\mid= \\ $$$$\mid\mathrm{6bcde}\mid−\mid\mathrm{6cde}\mid=\mathrm{126}−\mathrm{56}=\mathrm{70} \\ $$$$\left.\mathrm{f}\right)\mathrm{The}\:\mathrm{case}\:\overline {\mathrm{4bcde}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mid\mathrm{4bcde}\mid=\mathrm{70}−\mathrm{35}=\mathrm{35}\:\mathrm{numbers} \\ $$$$\left.\mathrm{g}\right)\mathrm{The}\:\mathrm{case}\:\mathrm{3bcde}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mid\mathrm{3bcde}\mid=\mathrm{35}−\mathrm{20}=\mathrm{15}\:\mathrm{numbers} \\ $$$$\mid\mid\mathrm{2bcde}\mid=\mathrm{15}−\mathrm{10}=\mathrm{5},\mid\mathrm{1bcde}\mid=\mathrm{1} \\ $$$$\mathrm{Finaly},\mathrm{in}\:\mathrm{total}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{495}+\mathrm{330}+\mathrm{210}+\mathrm{126}+\mathrm{70}+\mathrm{35}+\mathrm{15}+\mathrm{6}= \\ $$$$\mathrm{1287}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{form}\:\mathrm{abcde}\:\mathrm{satisfy}\: \\ $$$$\mathrm{the}\:\mathrm{condition}\:\mathrm{a}\geqslant\mathrm{b}\geqslant\mathrm{c}\geqslant\mathrm{d}\geqslant\mathrm{e} \\ $$

Commented by prakash jain last updated on 13/Oct/20

2 digits have 54 valid numbers.  10 20 30 40 50 60 70 80 90.

$$\mathrm{2}\:\mathrm{digits}\:\mathrm{have}\:\mathrm{54}\:\mathrm{valid}\:\mathrm{numbers}. \\ $$$$\mathrm{10}\:\mathrm{20}\:\mathrm{30}\:\mathrm{40}\:\mathrm{50}\:\mathrm{60}\:\mathrm{70}\:\mathrm{80}\:\mathrm{90}. \\ $$

Commented by 1549442205PVT last updated on 13/Oct/20

Here i just consider 9 digits 1,2...,9  case 10 digits is similar  For 10 digits then  ∣ab∣=C_(10) ^2 +10−1 since 00^(−)  is rejected  formula have given is always true

$$\mathrm{Here}\:\mathrm{i}\:\mathrm{just}\:\mathrm{consider}\:\mathrm{9}\:\mathrm{digits}\:\mathrm{1},\mathrm{2}...,\mathrm{9} \\ $$$$\mathrm{case}\:\mathrm{10}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{similar} \\ $$$$\mathrm{For}\:\mathrm{10}\:\mathrm{digits}\:\mathrm{then} \\ $$$$\mid\mathrm{ab}\mid=\mathrm{C}_{\mathrm{10}} ^{\mathrm{2}} +\mathrm{10}−\mathrm{1}\:\mathrm{since}\:\overline {\mathrm{00}}\:\mathrm{is}\:\mathrm{rejected} \\ $$$$\mathrm{formula}\:\mathrm{have}\:\mathrm{given}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true} \\ $$

Commented by prakash jain last updated on 13/Oct/20

                determinant (((x_1 →),9,8,7,6,5,4,3,2,1),((1d),1,1,1,1,1,1,1,1,1),((2d),9,8,7,6,5,4,3,2,1),((3d),(45),(36),(28),(21),(15),(10),6,3,1),((4d),(165),(120),(84),(56),(35),(20),(10),4,1),((5d),(495),(330),(210),(126),(70),(35),(15),5,1),((6d),(1287),(792),(462),(252),(126),(56),(21),6,1))  The very first colums first digit for nd gives  the same result as D(n−1)  N(n,k)= n digits number with                      first digit as k  N(n,k)=Σ_(j=0) ^k N(n−1,k)

$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\begin{vmatrix}{{x}_{\mathrm{1}} \rightarrow}&{\mathrm{9}}&{\mathrm{8}}&{\mathrm{7}}&{\mathrm{6}}&{\mathrm{5}}&{\mathrm{4}}&{\mathrm{3}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}{d}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{2}{d}}&{\mathrm{9}}&{\mathrm{8}}&{\mathrm{7}}&{\mathrm{6}}&{\mathrm{5}}&{\mathrm{4}}&{\mathrm{3}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{3}{d}}&{\mathrm{45}}&{\mathrm{36}}&{\mathrm{28}}&{\mathrm{21}}&{\mathrm{15}}&{\mathrm{10}}&{\mathrm{6}}&{\mathrm{3}}&{\mathrm{1}}\\{\mathrm{4}{d}}&{\mathrm{165}}&{\mathrm{120}}&{\mathrm{84}}&{\mathrm{56}}&{\mathrm{35}}&{\mathrm{20}}&{\mathrm{10}}&{\mathrm{4}}&{\mathrm{1}}\\{\mathrm{5}{d}}&{\mathrm{495}}&{\mathrm{330}}&{\mathrm{210}}&{\mathrm{126}}&{\mathrm{70}}&{\mathrm{35}}&{\mathrm{15}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{6}{d}}&{\mathrm{1287}}&{\mathrm{792}}&{\mathrm{462}}&{\mathrm{252}}&{\mathrm{126}}&{\mathrm{56}}&{\mathrm{21}}&{\mathrm{6}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{The}\:\mathrm{very}\:\mathrm{first}\:\mathrm{colums}\:\mathrm{first}\:\mathrm{digit}\:\mathrm{for}\:{nd}\:\mathrm{gives} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{result}\:\mathrm{as}\:{D}\left({n}−\mathrm{1}\right) \\ $$$${N}\left({n},{k}\right)=\:\mathrm{n}\:\mathrm{digits}\:\mathrm{number}\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{first}\:\mathrm{digit}\:\mathrm{as}\:{k} \\ $$$$\mathrm{N}\left({n},{k}\right)=\underset{{j}=\mathrm{0}} {\overset{{k}} {\sum}}{N}\left({n}−\mathrm{1},{k}\right) \\ $$

Commented by prakash jain last updated on 13/Oct/20

with 9 digits there are 1287  numbers  such that x_1 ≥x_2 ≥x_3 ≥x_4 ≥x_5   Σ_(i=0) ^4 ^4 C_i ×^9 C_(i+1)   1×9+4×36+6×84+4×126+1×126=  1287

$$\mathrm{with}\:\mathrm{9}\:\mathrm{digits}\:\mathrm{there}\:\mathrm{are}\:\mathrm{1287}\:\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:{x}_{\mathrm{1}} \geqslant{x}_{\mathrm{2}} \geqslant{x}_{\mathrm{3}} \geqslant{x}_{\mathrm{4}} \geqslant{x}_{\mathrm{5}} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}\:^{\mathrm{4}} {C}_{{i}} ×\:^{\mathrm{9}} {C}_{{i}+\mathrm{1}} \\ $$$$\mathrm{1}×\mathrm{9}+\mathrm{4}×\mathrm{36}+\mathrm{6}×\mathrm{84}+\mathrm{4}×\mathrm{126}+\mathrm{1}×\mathrm{126}= \\ $$$$\mathrm{1287} \\ $$

Commented by prakash jain last updated on 13/Oct/20

3 digits  ∣abc∣=∣9bc∣+∣8bc∣+∣7bc∣+6bc∣+∣5bc∣  +∣4bc∣+∣3bc∣=  i think this missed  222,221,211,111  the total should be 165.  Because condition is greater than  equal to all above are valid results.

$$\mathrm{3}\:\mathrm{digits} \\ $$$$\mid\mathrm{abc}\mid=\mid\mathrm{9bc}\mid+\mid\mathrm{8bc}\mid+\mid\mathrm{7bc}\mid+\mathrm{6bc}\mid+\mid\mathrm{5bc}\mid \\ $$$$+\mid\mathrm{4bc}\mid+\mid\mathrm{3bc}\mid= \\ $$$$\mathrm{i}\:\mathrm{think}\:\mathrm{this}\:\mathrm{missed} \\ $$$$\mathrm{222},\mathrm{221},\mathrm{211},\mathrm{111} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{should}\:\mathrm{be}\:\mathrm{165}. \\ $$$$\mathrm{Because}\:\mathrm{condition}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{all}\:\mathrm{above}\:\mathrm{are}\:\mathrm{valid}\:\mathrm{results}. \\ $$

Commented by prakash jain last updated on 13/Oct/20

These are known as binomial  cofficients.  N(n,k)=OEIS C(n,k−1)

$$\mathrm{These}\:\mathrm{are}\:\mathrm{known}\:\mathrm{as}\:\mathrm{binomial} \\ $$$$\mathrm{cofficients}. \\ $$$${N}\left({n},{k}\right)=\mathrm{OEIS}\:{C}\left({n},{k}−\mathrm{1}\right)\: \\ $$

Commented by prakash jain last updated on 13/Oct/20

http://oeis.org/A000581

Commented by mr W last updated on 13/Oct/20

thank you all!

$${thank}\:{you}\:{all}! \\ $$

Commented by 1549442205PVT last updated on 14/Oct/20

Thank Sir . I missed ∣2de∣=3,∣1de∣=1

$$\mathrm{Thank}\:\mathrm{Sir}\:.\:\mathrm{I}\:\mathrm{missed}\:\mid\mathrm{2de}\mid=\mathrm{3},\mid\mathrm{1de}\mid=\mathrm{1} \\ $$

Answered by mr W last updated on 13/Oct/20

let′s see n digit numbers d_1 d_2 d_3 ...d_n   with d_1 ≥d_2 ≥d_3 ≥...≥d_n .  we select n_0  times 0, n_1  times 1,  n_2  times 2, ..., n_9  times 9 to form such  a number.  n_0 +n_1 +n_2 +...+n_9 =n  ...(i)  with 0≤n_i  for i=0,1,2,...,9.  the number of valid n digit numbers  is the number of integer solutions of  (i).  using generating function  (1+x+x^2 +...)^(10) =(1/((1−x)^(10) ))=Σ_(k=0) ^∞ C_9 ^(k+9) x^k   the coefficient of x^n  term is the  answer, which is C_9 ^(n+9) . since the  number with n zeros is not valid,  we get the final answer   C_9 ^(n+9) −1.  for 5 digit numbers the answer is  C_9 ^(5+9) −1=2001.

$${let}'{s}\:{see}\:{n}\:{digit}\:{numbers}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} ...{d}_{{n}} \\ $$$${with}\:{d}_{\mathrm{1}} \geqslant{d}_{\mathrm{2}} \geqslant{d}_{\mathrm{3}} \geqslant...\geqslant{d}_{{n}} . \\ $$$${we}\:{select}\:{n}_{\mathrm{0}} \:{times}\:\mathrm{0},\:{n}_{\mathrm{1}} \:{times}\:\mathrm{1}, \\ $$$${n}_{\mathrm{2}} \:{times}\:\mathrm{2},\:...,\:{n}_{\mathrm{9}} \:{times}\:\mathrm{9}\:{to}\:{form}\:{such} \\ $$$${a}\:{number}. \\ $$$${n}_{\mathrm{0}} +{n}_{\mathrm{1}} +{n}_{\mathrm{2}} +...+{n}_{\mathrm{9}} ={n}\:\:...\left({i}\right) \\ $$$${with}\:\mathrm{0}\leqslant{n}_{{i}} \:{for}\:{i}=\mathrm{0},\mathrm{1},\mathrm{2},...,\mathrm{9}. \\ $$$${the}\:{number}\:{of}\:{valid}\:{n}\:{digit}\:{numbers} \\ $$$${is}\:{the}\:{number}\:{of}\:{integer}\:{solutions}\:{of} \\ $$$$\left({i}\right). \\ $$$${using}\:{generating}\:{function} \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...\right)^{\mathrm{10}} =\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{10}} }=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{9}} ^{{k}+\mathrm{9}} {x}^{{k}} \\ $$$${the}\:{coefficient}\:{of}\:{x}^{{n}} \:{term}\:{is}\:{the} \\ $$$${answer},\:{which}\:{is}\:{C}_{\mathrm{9}} ^{{n}+\mathrm{9}} .\:{since}\:{the} \\ $$$${number}\:{with}\:{n}\:{zeros}\:{is}\:{not}\:{valid}, \\ $$$${we}\:{get}\:{the}\:{final}\:{answer}\: \\ $$$${C}_{\mathrm{9}} ^{{n}+\mathrm{9}} −\mathrm{1}. \\ $$$${for}\:\mathrm{5}\:{digit}\:{numbers}\:{the}\:{answer}\:{is} \\ $$$${C}_{\mathrm{9}} ^{\mathrm{5}+\mathrm{9}} −\mathrm{1}=\mathrm{2001}. \\ $$

Commented by mr W last updated on 13/Oct/20

exactly sir!

$${exactly}\:{sir}! \\ $$

Commented by mr W last updated on 13/Oct/20

Commented by prakash jain last updated on 13/Oct/20

After looking at your formula, i  thought simplifying the result that  i got  Σ_(j=0) ^(n−1) ^(n−1) C_j ^(10) C_(j+1)   =Σ_(j=0) ^(n−1) ^(n−1) C_j ^(10) C_(9−j)  =A  (1+x)^(9+n) =(1+x)^(n−1) (1+x)^(10)   (1+x)^(9+n) =(^(n−1) C_0 +^(n−1) C_1 x+..+^(n−1) C_(n−1) x^(n−1) )         (^(10) C_0 +^(10) C_1 x+^(10) C_2 x^2 +..+^(10) C_(10) x^(10) )  A is same as coeffcient of x^9  in RHS  from LHS coefficient of x^9 =^(9+n) C_9

$$\mathrm{After}\:\mathrm{looking}\:\mathrm{at}\:\mathrm{your}\:\mathrm{formula},\:\mathrm{i} \\ $$$$\mathrm{thought}\:\mathrm{simplifying}\:\mathrm{the}\:\mathrm{result}\:\mathrm{that} \\ $$$$\mathrm{i}\:\mathrm{got} \\ $$$$\underset{{j}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:^{{n}−\mathrm{1}} {C}_{{j}} \:^{\mathrm{10}} {C}_{{j}+\mathrm{1}} \\ $$$$=\underset{{j}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:^{{n}−\mathrm{1}} {C}_{{j}} \:^{\mathrm{10}} {C}_{\mathrm{9}−{j}} \:=\mathrm{A} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{9}+{n}} =\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{1}} \left(\mathrm{1}+{x}\right)^{\mathrm{10}} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{9}+{n}} =\left(\:^{{n}−\mathrm{1}} {C}_{\mathrm{0}} +\:^{{n}−\mathrm{1}} {C}_{\mathrm{1}} {x}+..+^{{n}−\mathrm{1}} {C}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} \right) \\ $$$$\:\:\:\:\:\:\:\left(\:^{\mathrm{10}} {C}_{\mathrm{0}} +^{\mathrm{10}} {C}_{\mathrm{1}} {x}+^{\mathrm{10}} {C}_{\mathrm{2}} {x}^{\mathrm{2}} +..+^{\mathrm{10}} {C}_{\mathrm{10}} {x}^{\mathrm{10}} \right) \\ $$$${A}\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:\mathrm{coeffcient}\:\mathrm{of}\:{x}^{\mathrm{9}} \:\mathrm{in}\:\mathrm{RHS} \\ $$$$\mathrm{from}\:\mathrm{LHS}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{9}} =\:^{\mathrm{9}+{n}} {C}_{\mathrm{9}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com