Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 117791 by ZiYangLee last updated on 13/Oct/20

If k is an integer which satisfies   2sin^2 θ+10cos^2 (θ/2)=7−2k, then k∈?  A.{0,1,2,3}   B.{−1,0,1,2,3}  C.{(−2,−1,0,1,2,3}  D.{−3,−2,−1,0}

Ifkisanintegerwhichsatisfies2sin2θ+10cos2θ2=72k,thenk?A.{0,1,2,3}B.{1,0,1,2,3}C.{(2,1,0,1,2,3}D.{3,2,1,0}

Answered by floor(10²Eta[1]) last updated on 13/Oct/20

2(1−cos^2 θ)+10(((1+cosθ)/2))=7−2k  2−2cos^2 θ+5+5cosθ=7−2k  2cos^2 θ−5cosθ−2k=0  cosθ=((5±(√(25+16k)))/4)  −1≤((5±(√(25+16k)))/4)≤1  −9≤±(√(25+16k))≤−1  ⇒−9≤−(√(25+16k))≤−1  9≥(√(25+16k))≥1  81≥25+16k≥1  3.5≥k≥−1.5  Ans: B

2(1cos2θ)+10(1+cosθ2)=72k22cos2θ+5+5cosθ=72k2cos2θ5cosθ2k=0cosθ=5±25+16k415±25+16k419±25+16k1925+16k1925+16k18125+16k13.5k1.5Ans:B

Answered by TANMAY PANACEA last updated on 13/Oct/20

cos^2 (θ/2)=a  2(2sin(θ/2)cos(θ/2))^2 +10cos^2 (θ/2)  8(1−cos^2 (θ/2))cos^2 (θ/2)+10cos^2 (θ/2)  8(1−a)a+10a  8a−8a^2 +10a  18a−8a^2   −8a^2 +18a  −8(a^2 −((9a)/4))  −8(a^2 −2×a×(9/8)+((81)/(64))−((81)/(64)))  8×((81)/(64))−8(a−(9/8))^2   ((81)/8)−8(a−(9/8))^2     1≥cos(θ/2)≥−1 but 1≥cos^2 (θ/2)≥0   1≥a≥0  ((81)/8)−8(0−(9/8))^2 =0  ((81)/8)−8(1−(9/8))^2 =((81)/8)−8×(1/(64))=((81−1)/8)=10  now  10≥7−2k≥0  3≥−2k≥−7  −3≤2k≤7  ((−3)/2)≤k≤(7/2)  −1.5≤k≤3.5

cos2θ2=a2(2sinθ2cosθ2)2+10cos2θ28(1cos2θ2)cos2θ2+10cos2θ28(1a)a+10a8a8a2+10a18a8a28a2+18a8(a29a4)8(a22×a×98+81648164)8×81648(a98)28188(a98)21cosθ21but1cos2θ201a08188(098)2=08188(198)2=8188×164=8118=10now1072k032k732k732k721.5k3.5

Answered by 1549442205PVT last updated on 14/Oct/20

2sin^2 θ+10cos^2 (θ/2)=7−2k (1)  ⇔2(sin(θ/2)cos(θ/2))^2 +10cos^2 (θ/2)=7−2k  ⇔2sin^2 (θ/2)cos^2 (θ/2)+10cos^2 (θ/2)=7−k  •If cos^2 x=0 then sin^2 x=1⇒(1)⇔k=2.5∉Z  •If cos^2 x≠0 then divide both sides of  equation(1)by cos^2 x we get  (1)⇔2tan^2 (θ/2)+10=(7−2k)(1+tan^2 (θ/2))  ⇔(5−2k)tan^2 (θ/2)=3+2k⇒k≠2.5  ⇔tan^2 (θ/2)=((3+2k)/(5−2k))≥0⇔−1.5≤k<2.5  k∈Z⇒k∈{−1,0,1,2}⇒Choose B

2sin2θ+10cos2θ2=72k(1)2(sinθ2cosθ2)2+10cos2θ2=72k2sin2θ2cos2θ2+10cos2θ2=7kIfcos2x=0thensin2x=1(1)k=2.5ZIfcos2x0thendividebothsidesofequation(1)bycos2xweget(1)2tan2θ2+10=(72k)(1+tan2θ2)(52k)tan2θ2=3+2kk2.5tan2θ2=3+2k52k01.5k<2.5kZk{1,0,1,2}ChooseB

Terms of Service

Privacy Policy

Contact: info@tinkutara.com