Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 117832 by snipers237 last updated on 13/Oct/20

Let a,b>0  and x∈]0;(π/2)[     Prove   ((a/(sinx))+1)((b/(cosx))+1)≥(1+(√(2ab)))^2

$$\left.{Let}\:{a},{b}>\mathrm{0}\:\:{and}\:{x}\in\right]\mathrm{0};\frac{\pi}{\mathrm{2}}\left[\:\right. \\ $$ $$\:\:{Prove}\:\:\:\left(\frac{{a}}{{sinx}}+\mathrm{1}\right)\left(\frac{{b}}{{cosx}}+\mathrm{1}\right)\geqslant\left(\mathrm{1}+\sqrt{\mathrm{2}{ab}}\right)^{\mathrm{2}} \\ $$ $$ \\ $$

Answered by 1549442205PVT last updated on 14/Oct/20

From the hypothesis a,b>0  and x∈]0;(π/2)[   we have sinx>0,cosx>0.Hence  L.H.S=(a/(sinx))+(b/(cosx))+((ab)/(sinxcosx))+1  =((√(a/(sinx)))−(√(b/(cosx))))^2 +2(√((ab)/(sinxcosx)))  +((2ab)/(sin2x))+1≥2(√((2ab)/(sin2x)))+((2ab)/(sin2x))+1  ≥2ab+2(√(2ab))+1=(1+(√(2ab)))^2   (due to  0<sin2x≤1).Hence,the inequality    ((a/(sinx))+1)((b/(cosx))+1)≥(1+(√(2ab)))^2   is proved.The equality ocurrs if and  only if    { (( (a/(sinx))=(b/(cosx)))),((sin2x=1)) :} ⇔ { ((x=(π/4))),((a=b)) :}

$$\left.\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:{a},{b}>\mathrm{0}\:\:{and}\:{x}\in\right]\mathrm{0};\frac{\pi}{\mathrm{2}}\left[\:\right. \\ $$ $$\mathrm{we}\:\mathrm{have}\:\mathrm{sinx}>\mathrm{0},\mathrm{cosx}>\mathrm{0}.\mathrm{Hence} \\ $$ $$\mathrm{L}.\mathrm{H}.\mathrm{S}=\frac{\mathrm{a}}{\mathrm{sinx}}+\frac{\mathrm{b}}{\mathrm{cosx}}+\frac{\mathrm{ab}}{\mathrm{sinxcosx}}+\mathrm{1} \\ $$ $$=\left(\sqrt{\frac{\mathrm{a}}{\mathrm{sinx}}}−\sqrt{\frac{\mathrm{b}}{\mathrm{cosx}}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\frac{\mathrm{ab}}{\mathrm{sinxcosx}}} \\ $$ $$+\frac{\mathrm{2ab}}{\mathrm{sin2x}}+\mathrm{1}\geqslant\mathrm{2}\sqrt{\frac{\mathrm{2ab}}{\mathrm{sin2x}}}+\frac{\mathrm{2ab}}{\mathrm{sin2x}}+\mathrm{1} \\ $$ $$\geqslant\mathrm{2ab}+\mathrm{2}\sqrt{\mathrm{2ab}}+\mathrm{1}=\left(\mathrm{1}+\sqrt{\mathrm{2ab}}\right)^{\mathrm{2}} \\ $$ $$\left(\mathrm{due}\:\mathrm{to}\:\:\mathrm{0}<\mathrm{sin2x}\leqslant\mathrm{1}\right).\mathrm{Hence},\mathrm{the}\:\mathrm{inequality} \\ $$ $$\:\:\left(\frac{{a}}{{sinx}}+\mathrm{1}\right)\left(\frac{{b}}{{cosx}}+\mathrm{1}\right)\geqslant\left(\mathrm{1}+\sqrt{\mathrm{2}{ab}}\right)^{\mathrm{2}} \\ $$ $$\mathrm{is}\:\mathrm{proved}.\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and} \\ $$ $$\mathrm{only}\:\mathrm{if}\: \\ $$ $$\begin{cases}{\:\frac{\mathrm{a}}{\mathrm{sinx}}=\frac{\mathrm{b}}{\mathrm{cosx}}}\\{\mathrm{sin2x}=\mathrm{1}}\end{cases}\:\Leftrightarrow\begin{cases}{\mathrm{x}=\frac{\pi}{\mathrm{4}}}\\{\mathrm{a}=\mathrm{b}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com