Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 117838 by snipers237 last updated on 13/Oct/20

  Let be P  the set of prime numbers and   A=P∪{0,1}  Prove that   Π_(n∉A)  (n/( (√(n^2 −1)))) =(2/π)(√3)

$$\:\:{Let}\:{be}\:{P}\:\:{the}\:{set}\:{of}\:{prime}\:{numbers}\:{and}\: \\ $$$${A}={P}\cup\left\{\mathrm{0},\mathrm{1}\right\} \\ $$$${Prove}\:{that}\:\:\:\underset{{n}\notin{A}} {\prod}\:\frac{{n}}{\:\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:=\frac{\mathrm{2}}{\pi}\sqrt{\mathrm{3}}\: \\ $$

Answered by mindispower last updated on 14/Oct/20

let Π_(n≥2) (n/( (√(n^2 −1))))=I  I^2 =Π_(n≥2) (n/((n−1))).(n/((n+1)))=((2.2)/(1.3)).((3.3)/(2.4)).((4.4)/(3.5))......  I^2 =lim_(N→∞) .Π_(n=2) ^N ((n/(n−1)).(n/(n+1)))=lim_(N→∞) ((2N)/(N+1))    I^2 →2⇒I→(√2),since I≥0 and x→(√(x  )) continus  let P bee set ofrimes numbers  Π_(p∈P) (n^2 /(n^2 −1))=Π_(p∈P) (1/(1−(1/p^2 )))  =Π_(p∈P) (Σ_(s≥0) (1/p^(2s) ))=Σ_(n≥1) (1/n^2 )=ζ(2)=(π^2 /6)  A=P∪{0,1}  Π_(n∉A) (n^2 /(n^2 −1))=Π_(n≥2) (n^2 /(n^2 −1))/(Π_(n∈P) (n^2 /(n^2 −1)))=(2/(π^2 /6))  =((12)/π^2 )  Π_(n∉A) (n/( (√(n^2 −1))))=(√((12)/π^2 ))=((2(√3))/π)

$${let}\:\underset{{n}\geqslant\mathrm{2}} {\prod}\frac{{n}}{\:\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}={I} \\ $$$${I}^{\mathrm{2}} =\underset{{n}\geqslant\mathrm{2}} {\prod}\frac{{n}}{\left({n}−\mathrm{1}\right)}.\frac{{n}}{\left({n}+\mathrm{1}\right)}=\frac{\mathrm{2}.\mathrm{2}}{\mathrm{1}.\mathrm{3}}.\frac{\mathrm{3}.\mathrm{3}}{\mathrm{2}.\mathrm{4}}.\frac{\mathrm{4}.\mathrm{4}}{\mathrm{3}.\mathrm{5}}...... \\ $$$${I}^{\mathrm{2}} =\underset{{N}\rightarrow\infty} {\mathrm{lim}}.\underset{{n}=\mathrm{2}} {\overset{{N}} {\prod}}\left(\frac{{n}}{{n}−\mathrm{1}}.\frac{{n}}{{n}+\mathrm{1}}\right)=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}{N}}{{N}+\mathrm{1}}\:\: \\ $$$${I}^{\mathrm{2}} \rightarrow\mathrm{2}\Rightarrow{I}\rightarrow\sqrt{\mathrm{2}},{since}\:{I}\geqslant\mathrm{0}\:{and}\:{x}\rightarrow\sqrt{{x}\:\:}\:{continus} \\ $$$${let}\:{P}\:{bee}\:{set}\:{ofrimes}\:{numbers} \\ $$$$\underset{{p}\in{P}} {\prod}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −\mathrm{1}}=\underset{{p}\in{P}} {\prod}\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{p}^{\mathrm{2}} }} \\ $$$$=\underset{{p}\in{P}} {\prod}\left(\underset{{s}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{p}^{\mathrm{2}{s}} }\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$${A}={P}\cup\left\{\mathrm{0},\mathrm{1}\right\} \\ $$$$\underset{{n}\notin{A}} {\prod}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −\mathrm{1}}=\underset{{n}\geqslant\mathrm{2}} {\prod}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −\mathrm{1}}/\left(\underset{{n}\in{P}} {\prod}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −\mathrm{1}}\right)=\frac{\mathrm{2}}{\frac{\pi^{\mathrm{2}} }{\mathrm{6}}} \\ $$$$=\frac{\mathrm{12}}{\pi^{\mathrm{2}} } \\ $$$$\underset{{n}\notin{A}} {\prod}\frac{{n}}{\:\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}=\sqrt{\frac{\mathrm{12}}{\pi^{\mathrm{2}} }}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com