Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 117895 by aurpeyz last updated on 14/Oct/20

prove by mathematical induction that  (1/(n+1))+(1/(n+2))+...+(1/(2n))>(1/2)

$${prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$ $$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented byDwaipayan Shikari last updated on 14/Oct/20

((n+1+n+2+...)/n)≥(n/((1/(n+1))+(1/(n+2))+....))  ((2n^2 +n^2 +n)/(2n^2 ))≥(1/((1/(n+1))+(1/(n+2))+(1/(n+3))+...))   (Without Mathematical Induction)  (1/(n+1))+(1/(n+2))+(1/(n+3))+...≥((2n^2 )/(3n^2 +n))  (1/(n+1))+(1/(n+2))+(1/(n+3))+...≥((2n)/(3n+1))  General Inequality  If we take n=1  then  (1/(1+1))+(1/(1+2))+(1/(1+3))+....>(2/4)  is (Always greater than (1/2))  So  (1/(n+1))+(1/(n+2))+(1/(n+3))+....>(1/2)

$$\frac{{n}+\mathrm{1}+{n}+\mathrm{2}+...}{{n}}\geqslant\frac{{n}}{\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+....} \\ $$ $$\frac{\mathrm{2}{n}^{\mathrm{2}} +{n}^{\mathrm{2}} +{n}}{\mathrm{2}{n}^{\mathrm{2}} }\geqslant\frac{\mathrm{1}}{\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+\frac{\mathrm{1}}{{n}+\mathrm{3}}+...}\:\:\:\left({Without}\:{Mathematical}\:{Induction}\right) \\ $$ $$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+\frac{\mathrm{1}}{{n}+\mathrm{3}}+...\geqslant\frac{\mathrm{2}{n}^{\mathrm{2}} }{\mathrm{3}{n}^{\mathrm{2}} +{n}} \\ $$ $$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+\frac{\mathrm{1}}{{n}+\mathrm{3}}+...\geqslant\frac{\mathrm{2}{n}}{\mathrm{3}{n}+\mathrm{1}} \\ $$ $${General}\:{Inequality} \\ $$ $${If}\:{we}\:{take}\:{n}=\mathrm{1} \\ $$ $${then} \\ $$ $$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}}+....>\frac{\mathrm{2}}{\mathrm{4}}\:\:{is}\:\left({Always}\:{greater}\:{than}\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ $${So} \\ $$ $$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+\frac{\mathrm{1}}{{n}+\mathrm{3}}+....>\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by 1549442205PVT last updated on 14/Oct/20

Prove that  (1/(n+1))+(1/(n+2))+...+(1/(2n))>(1/2)(1) for n>2,n∈N  i)For n=2 we have (1/(2+1))+(1/(2+2))=(1/3)+(1/4)  =(7/(12))>(6/(12))=(1/2)⇒ The inequality is true  ii)Suppose the inequality was true   for n=k that means S_k =Σ_(p=1) ^(k) (1/(k+p))<(1/(2k))  iii)Need prove that S_(k+1) =Σ_(p=1) ^(k)  (1/(k+1+p))<(1/(2(k+1)))  Indeed,S_(k+1) =(1/(k+2))+...+(1/(2k))+(1/(2(k+1)))  =(1/(k+1))+(1/(k+2))+...+(1/(2k))+((1/(2(k+1)))−(1/(k+1)))  =S_k −(1/(2(k+1)))<(1/(2k))−(1/(2(k+1)))=((k+1−k)/(2k(k+1)))  =(1/(2k(k+1)))<(1/(2(k+1))).This shows the  inequality (1) is also true for n=k+1  By induction mathematic principle  it is true ∀n∈N,n≥2  second way(don′t use induction method)  Since n+k<2n ∀k=1,2,...,(n−1),so  (1/(n+k))<(1/(2n ))∀k=1,2,...,(n−1).Hence  (1/(n+1))+(1/(n+2))+...+(1/(2n))>(1/(2n))+(1/(2n))+...+(1/(2n))  =((1+1+...+1)/(2n))=(n/(2n))=(1/2)  Since the sum consist of n terms

$$\mathrm{Prove}\:\mathrm{that}\:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}>\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\right)\:\mathrm{for}\:\mathrm{n}>\mathrm{2},\mathrm{n}\in\mathrm{N} \\ $$ $$\left.\mathrm{i}\right)\mathrm{For}\:\mathrm{n}=\mathrm{2}\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$ $$=\frac{\mathrm{7}}{\mathrm{12}}>\frac{\mathrm{6}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\:\mathrm{The}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{true} \\ $$ $$\left.\mathrm{ii}\right)\mathrm{Suppose}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{was}\:\mathrm{true}\: \\ $$ $$\mathrm{for}\:\mathrm{n}=\mathrm{k}\:\mathrm{that}\:\mathrm{means}\:\mathrm{S}_{\mathrm{k}} \underset{\mathrm{p}=\mathrm{1}} {=\Sigma}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{p}}<\frac{\mathrm{1}}{\mathrm{2k}} \\ $$ $$\left.\mathrm{iii}\right)\mathrm{Need}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{S}_{\mathrm{k}+\mathrm{1}} =\underset{\mathrm{p}=\mathrm{1}} {\overset{\mathrm{k}} {\Sigma}}\:\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}+\mathrm{p}}<\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)} \\ $$ $$\mathrm{Indeed},\mathrm{S}_{\mathrm{k}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{k}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2k}}+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{k}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2k}}+\left(\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right) \\ $$ $$=\mathrm{S}_{\mathrm{k}} −\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}<\frac{\mathrm{1}}{\mathrm{2k}}−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}=\frac{\mathrm{k}+\mathrm{1}−\mathrm{k}}{\mathrm{2k}\left(\mathrm{k}+\mathrm{1}\right)} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2k}\left(\mathrm{k}+\mathrm{1}\right)}<\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{k}+\mathrm{1}\right)}.\mathrm{This}\:\mathrm{shows}\:\mathrm{the} \\ $$ $$\mathrm{inequality}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{also}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$ $$\mathrm{By}\:\mathrm{induction}\:\mathrm{mathematic}\:\mathrm{principle} \\ $$ $$\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\forall\mathrm{n}\in\mathrm{N},\mathrm{n}\geqslant\mathrm{2} \\ $$ $$\boldsymbol{\mathrm{second}}\:\boldsymbol{\mathrm{way}}\left(\mathrm{don}'\mathrm{t}\:\mathrm{use}\:\mathrm{induction}\:\mathrm{method}\right) \\ $$ $$\mathrm{Since}\:\mathrm{n}+\mathrm{k}<\mathrm{2n}\:\forall\mathrm{k}=\mathrm{1},\mathrm{2},...,\left(\mathrm{n}−\mathrm{1}\right),\mathrm{so} \\ $$ $$\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}<\frac{\mathrm{1}}{\mathrm{2n}\:}\forall\mathrm{k}=\mathrm{1},\mathrm{2},...,\left(\mathrm{n}−\mathrm{1}\right).\mathrm{Hence} \\ $$ $$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}>\frac{\mathrm{1}}{\mathrm{2n}}+\frac{\mathrm{1}}{\mathrm{2n}}+...+\frac{\mathrm{1}}{\mathrm{2n}} \\ $$ $$=\frac{\mathrm{1}+\mathrm{1}+...+\mathrm{1}}{\mathrm{2n}}=\frac{\mathrm{n}}{\mathrm{2n}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\mathrm{Since}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com