All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 117903 by aurpeyz last updated on 14/Oct/20
provebymathematicalinductionthatn(n+1)(n+2)isanintegermultipleof6
Answered by mindispower last updated on 14/Oct/20
(n+1)(n+2)(n+3)=n(n+1)(n+2)+3(n+1)(n+2)=n(n+1)(n+2)+3n2+9n+6=n(n+1)(n+2)+3n(n+1)+6(n+1)pm=m(m+1)(m+2)2∣n(n+1)‘‘n=2ktru,n=2k+1⇒n+1=2(k+1)true″forn=0wehve6∣0truesupose∀n6∣Pn;6∣Pn+1Pn+1=(n+1)(n+2)(n+3)=n(n+1)(n+2)+3n(n+1)+6pn=n(n+1)(n+2)=6kbyhypothesn(n+1)=2a⇒pn+1=6(k+a+1)⇒6∣pn+1
Answered by 1549442205PVT last updated on 14/Oct/20
Proven(n+1)(n+2)ismultiplyof6∀n∈N,n⩾1bymathematicalinuctioni)Forn=1⇒A1=1.2.3=6⋮6⇒Stateistrueii)SupposeStatewastrue∀n⩽kthatmeansAk=k(k+1)(k+2)⋮6iii)WewillprovethatAk+1⋮6Indeed,Ak+1=(k+1)(k+2)(k+3)=k(k+1)(k+2)+3(k+1)(k+2)=Ak+3(k2+3k+2)=Ak+3k(k+1)+6(k+1)⋮6SinceAk⋮6,6(k+1)⋮63k(k+1)⋮6(byintwosequencenumbersalwayshaveoneevennumber)Thus,Stateisalsoforn=k+1,sobymathimaticalinductionprincipleStateistrue∀n∈N∗(q.e.d)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com