All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 117944 by bemath last updated on 14/Oct/20
Findthevalueofksatisfiestheequation∫0π3(tanxcosx2k)dx=1−12
Answered by john santu last updated on 14/Oct/20
∫0π3(sinxcosx2kcosx)dx=2−12⇒1k∫0π3sinxcosxdx=2−1⇒1k∫0π3d(cosx)cosx=1−2⇒[2cosxk]0π3=1−2⇒22−2k=1−2;k=(2−21−2)2⇒k=(2(1−2)1−2)2=2
Answered by Dwaipayan Shikari last updated on 14/Oct/20
12k∫0π3sinxcosxdx=−12k∫112dtt=2k[t]1212k(1−12)=1−122k=1k=2
Answered by 1549442205PVT last updated on 14/Oct/20
∫0π3(tanxcosx2k)dx=1−12⇔∫0π3(sinxxcosxcosx2k)dx=1−12−∫0π3(cosxcosx2k)d(cosx)=1−12∫0π3(1cosx2k)d(cosx)=−1+12∫11/2dt2kt=−1+12⇔2t2k∣11/2=−1+12⇔2k(12−1)=12−1⇔2k=1⇔k=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com