Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117944 by bemath last updated on 14/Oct/20

Find the value of k satisfies   the equation ∫ _0^(π/3)  (((tan x (√(cos x)))/( (√(2k)))) ) dx = 1−(1/( (√2)))

Findthevalueofksatisfiestheequation0π3(tanxcosx2k)dx=112

Answered by john santu last updated on 14/Oct/20

∫ _0^(π/3)  (((sin x (√(cos x)))/( (√(2k)) cos x)) ) dx = (((√2)−1)/( (√2)))  ⇒(1/( (√k))) ∫_0 ^(π/3)  ((sin x)/( (√(cos x)))) dx = (√2)−1  ⇒(1/( (√k) )) ∫_0 ^(π/3)  ((d(cos x))/( (√(cos x)))) = 1−(√2)  ⇒[ ((2 (√(cos x)))/( (√k))) ]_0 ^(π/3) = 1−(√2)  ⇒(((2/( (√2)))−2)/( (√k))) = 1−(√2) ; k = ((((√2)−2)/(1−(√2))))^2   ⇒k = ((((√2)(1−(√2)))/(1−(√2))))^2 = 2

0π3(sinxcosx2kcosx)dx=2121k0π3sinxcosxdx=211k0π3d(cosx)cosx=12[2cosxk]0π3=12222k=12;k=(2212)2k=(2(12)12)2=2

Answered by Dwaipayan Shikari last updated on 14/Oct/20

(1/( (√(2k))))∫_0 ^(π/3) ((sinx)/( (√(cosx))))dx=−(1/( (√(2k))))∫_1 ^(1/2) (dt/( (√t)))=(√(2/k)) [(√t)]_(1/2) ^1   (√(2/k))(1−(1/( (√2))))=1−(1/( (√2)))  (2/k)=1  k=2

12k0π3sinxcosxdx=12k112dtt=2k[t]1212k(112)=1122k=1k=2

Answered by 1549442205PVT last updated on 14/Oct/20

 ∫ _0^(π/3)  (((tan x (√(cos x)))/( (√(2k)))) ) dx = 1−(1/( (√2)))  ⇔ ∫ _0^(π/3)  (((sinx x (√(cos x)))/( cosx(√(2k)))) ) dx = 1−(1/( (√2)))   −∫ _0^(π/3)  ((( (√(cos x)))/( cosx(√(2k)))) ) d(cosx) = 1−(1/( (√2)))   ∫ _0^(π/3)  ((( 1)/( (√(cosx)) (√(2k)))) ) d(cosx) = −1+(1/( (√2)))  ∫_1 ^(1/2) (dt/( (√(2k)) (√t))) =−1+(1/( (√2)))⇔((2(√t))/( (√(2k))))∣_1 ^(1/2) =−1+(1/( (√2)))   ⇔((√2)/( (√k)))((1/( (√2)))−1)=(1/( (√2)))−1⇔((√2)/( (√k)))=1⇔k=2

0π3(tanxcosx2k)dx=1120π3(sinxxcosxcosx2k)dx=1120π3(cosxcosx2k)d(cosx)=1120π3(1cosx2k)d(cosx)=1+1211/2dt2kt=1+122t2k11/2=1+122k(121)=1212k=1k=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com