Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117945 by bemath last updated on 14/Oct/20

f(x) = ∫ ((5x^8 +7x^6 )/((2x^7 +x^2 +1)^2 )) dx and    f(0) = 0 , then f(1) = _

f(x)=5x8+7x6(2x7+x2+1)2dxandf(0)=0,thenf(1)=_

Commented by bemath last updated on 14/Oct/20

thank you all sir

thankyouallsir

Answered by john santu last updated on 14/Oct/20

f(x)=∫ ((5x^8 +7x^6 )/(x^(14) (2+x^(−5) +x^(−7) )^2 )) dx   f(x)=∫ ((5x^(−6) +7x^(−8) )/((2+x^(−5) +x^(−7) )^2 )) dx   letting φ = 2+x^(−5) +x^(−7)  then   dφ = −(5x^(−6) +7x^(−8) ) dx  f(x) = ∫ ((−dφ)/φ^2 ) = −∫φ^(−2)  dφ = (1/φ)+c  f(x)= (1/(2+x^(−5) +x^(−7) )) + c   f(x)= (x^7 /(2x^7 +x^2 +1)) + c   since f(0) = 0 we get c = 0  thus f(1)= (1/4)

f(x)=5x8+7x6x14(2+x5+x7)2dxf(x)=5x6+7x8(2+x5+x7)2dxlettingϕ=2+x5+x7thendϕ=(5x6+7x8)dxf(x)=dϕϕ2=ϕ2dϕ=1ϕ+cf(x)=12+x5+x7+cf(x)=x72x7+x2+1+csincef(0)=0wegetc=0thusf(1)=14

Answered by Dwaipayan Shikari last updated on 14/Oct/20

∫((5x^8 +7x^6 )/((2x^7 +x^2 +1)^2 ))dx  =∫(((5/x^6 )+(7/x^8 ))/((2+(1/x^5 )+(1/x^7 ))^2 ))dx  =−∫(dt/t^2 )  =(1/t)+C=(1/((2+(1/x^5 )+(1/x^7 ))))  f(x)=(x^7 /(2x^7 +x^2 +1))+C⇒f(0)=0+C=0  f(1)=(1/(2.1+1+1))=(1/4)

5x8+7x6(2x7+x2+1)2dx=5x6+7x8(2+1x5+1x7)2dx=dtt2=1t+C=1(2+1x5+1x7)f(x)=x72x7+x2+1+Cf(0)=0+C=0f(1)=12.1+1+1=14

Answered by 1549442205PVT last updated on 14/Oct/20

Put x=(1/t)⇒dx=−(dt/t^2 )  f(x)=−∫(((5/t^8 )+(7/t^6 ))/(((2/t^7 )+(1/t^2 )+1)^2 )).(dt/t^2 )  =−∫((t^4 (5+7t^2 )dt)/((t^7 +t^5 +2)^2 ))=−∫((5t^4 +7t^6 )/((t^7 +t^5 +2)^2 ))dt  Put t^7 +t^5 +2=u⇒du=(7t^6 +5t^4 )dt  ⇒f(x(u))=−∫(du/u^2 )=(1/u)=(1/(t^7 +t^5 +2))+C  ⇒f(x)=(1/((1/x^7 )+(1/x^5 )+2))=(x^7 /(2x^7 +x^2 +1))+C  f(0)=0⇒C=0.Hence  f(x)=(x^7 /(2x^7 +x^2 +1))⇒f(1)=(1/4)

Putx=1tdx=dtt2f(x)=5t8+7t6(2t7+1t2+1)2.dtt2=t4(5+7t2)dt(t7+t5+2)2=5t4+7t6(t7+t5+2)2dtPutt7+t5+2=udu=(7t6+5t4)dtf(x(u))=duu2=1u=1t7+t5+2+Cf(x)=11x7+1x5+2=x72x7+x2+1+Cf(0)=0C=0.Hencef(x)=x72x7+x2+1f(1)=14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com