Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118073 by bemath last updated on 15/Oct/20

Evaluate ∫_0 ^a  b(√(1−(x^2 /a^2 ))) dx

Evaluatea0b1x2a2dx

Answered by john santu last updated on 15/Oct/20

I=∫_0 ^a  (b/a) (√(a^2 −x^2 )) dx ; the integral represents the area  of a quarter circle having radius a  I= (b/a)×(1/4)πa^2  = ((πab)/4)

I=a0baa2x2dx;theintegralrepresentstheareaofaquartercirclehavingradiusaI=ba×14πa2=πab4

Commented by bemath last updated on 15/Oct/20

gave kudos

gavekudos

Commented by MJS_new last updated on 15/Oct/20

right but it′s not a circle but an ellipse

rightbutitsnotacirclebutanellipse

Commented by john santu last updated on 16/Oct/20

no sir. its a circle. If y =(√(a^2 −x^2 ))   ⇒y^2 +x^2  = a^2

nosir.itsacircle.Ify=a2x2y2+x2=a2

Commented by MJS_new last updated on 16/Oct/20

yes. but y=(b/a)(√(a^2 −x^2 )) is an ellipse

yes.buty=baa2x2isanellipse

Answered by 1549442205PVT last updated on 15/Oct/20

Evaluate ∫_0 ^a  b(√(1−(x^2 /a^2 ))) dx   Put x=acosϕ(ϕ∈[0,π])⇒dx=−asinϕdϕ  I=−∫_(π/2) ^( 0) absin^2 ϕdϕ=∫_0 ^( π/2) ab((1−cos2ϕ)/2)dϕ  =(((abϕ)/2)−((ab)/4)sin2ϕ)∣_0 ^(π/2) =((abπ)/( 4))

Evaluatea0b1x2a2dxPutx=acosφ(φ[0,π])dx=asinφdφI=π/20absin2φdφ=0π/2ab1cos2φ2dφ=(abφ2ab4sin2φ)0π/2=abπ4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com