All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 118078 by bemath last updated on 15/Oct/20
3(cosx+sinx)4+6(sinx−cosx)2−3(sin6x+cos6x)=?
Answered by bobhans last updated on 15/Oct/20
(1)(sinx+cosx)4=(1+sin2x)2=1+2sin2x+sin22x(2)(sinx−cosx)2=1−sin2x(3)sin6x+cos6x=(sin2x)3+(cos2x)3=1(sin4x−sin2xcos2x+cos4x)=(sin2x)2+(cos2x)2−14sin22x=1−2sin2xcos2x−14sin22x=1−34sin22xNowwewantcompute3×(1)+6×(2)−3×(3)⇒3+6sin2x+3sin22x+6−6sin2x−(3−94sin22x)=9+3sin22x−3+94sin22x=6+214sin22x
Answered by MJS_new last updated on 15/Oct/20
3(c+s)4+6(s−c)2−3(s6+c6)==−3(c6+s6−c4−s4−4c3s−4cs3−6c2s2−2c2−2s2+4cs)=[c=1−s2]=−3(7(s4−s2)−2)==3(7s2(1−s2)+2)==3(7s2c2+2)==6+21sin2xcos2x==6+214sin22x==698−218cos4x
Commented by bemath last updated on 15/Oct/20
shortcutway
Terms of Service
Privacy Policy
Contact: info@tinkutara.com