Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118188 by mnjuly1970 last updated on 16/Oct/20

Commented by MJS_new last updated on 16/Oct/20

f(x)=e^(−(4/x^2 ))   lim_(x→0)  f(x) =0  lim_(x→±∞)  f(x) =1  f′(x)>0∀x>0  ⇒ integral doesn′t converge

$${f}\left({x}\right)=\mathrm{e}^{−\frac{\mathrm{4}}{{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:=\mathrm{1} \\ $$$${f}'\left({x}\right)>\mathrm{0}\forall{x}>\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{integral}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{converge} \\ $$

Commented by mnjuly1970 last updated on 16/Oct/20

you are right .  i corrected it.  thank you ..

$${you}\:{are}\:{right}\:. \\ $$$${i}\:{corrected}\:{it}. \\ $$$${thank}\:{you}\:.. \\ $$

Answered by aleks041103 last updated on 16/Oct/20

u=(1/x) ⇒ x=(1/u) ⇒ dx = −(1/u^2 )du  ⇒ ∫e^(−1/x^2 ) dx=−∫e^(−u^2 ) (du/u^2 )=∫e^(−u^2 ) d((1/u))  IBP  ∫e^(−u^2 ) d((1/u))=(e^(−u^2 ) /u)−∫(1/u)d(e^(−u^2 ) )=  =(e^(−u^2 ) /u)+∫2ue^(−u^2 ) (1/u)du=  =(√π) erf(u)+(e^(−u^2 ) /u)=(√π)erf(1/x)+xe^(−1/x^2 )   ⇒∫e^(−1/x^2 ) dx=(√π)erf(1/x)+xe^(−1/x^2 )   ∫e^(−(a/x)^2 ) dx=a∫e^(−(1/(x/a))^2 ) d(x/a)=  =[a(√π)erf((a/x))+xe^(−(a/x)^2 ) ]  ∫_0 ^∞ e^(−(a/x)^2 ) dx=−[a(√π)erf((a/x))+xe^(−(a/x)^2 ) ]_∞ ^0 =  =−a(√π)+lim_(x→∞) xe^(−(a/x)^2 )   Ω=∫_0 ^∞ (e^(−(4/x^2 )) −e^(−(9/x^2 )) )dx=  =∫_0 ^∞ e^(−(2/x)^2 ) dx−∫_0 ^∞ e^(−(3/x)^2 ) dx=  =−2(√π)+3(√π)−lim_(x→∞) [x(e^(−(3/x)^2 ) −e^(−(2/x)^2 ) )]=  =(√π)−lim_(x→∞) [x((1−(9/x^2 ))−(1−(4/x^2 )))]  =(√π)+5lim_(x→∞) ((1/x))=(√π)  Ω=(√π)

$${u}=\frac{\mathrm{1}}{{x}}\:\Rightarrow\:{x}=\frac{\mathrm{1}}{{u}}\:\Rightarrow\:{dx}\:=\:−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }{du} \\ $$$$\Rightarrow\:\int{e}^{−\mathrm{1}/{x}^{\mathrm{2}} } {dx}=−\int{e}^{−{u}^{\mathrm{2}} } \frac{{du}}{{u}^{\mathrm{2}} }=\int{e}^{−{u}^{\mathrm{2}} } {d}\left(\frac{\mathrm{1}}{{u}}\right) \\ $$$${IBP} \\ $$$$\int{e}^{−{u}^{\mathrm{2}} } {d}\left(\frac{\mathrm{1}}{{u}}\right)=\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}−\int\frac{\mathrm{1}}{{u}}{d}\left({e}^{−{u}^{\mathrm{2}} } \right)= \\ $$$$=\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}+\int\mathrm{2}{ue}^{−{u}^{\mathrm{2}} } \frac{\mathrm{1}}{{u}}{du}= \\ $$$$=\sqrt{\pi}\:{erf}\left({u}\right)+\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}=\sqrt{\pi}{erf}\left(\mathrm{1}/{x}\right)+{xe}^{−\mathrm{1}/{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\int{e}^{−\mathrm{1}/{x}^{\mathrm{2}} } {dx}=\sqrt{\pi}{erf}\left(\mathrm{1}/{x}\right)+{xe}^{−\mathrm{1}/{x}^{\mathrm{2}} } \\ $$$$\int{e}^{−\left({a}/{x}\right)^{\mathrm{2}} } {dx}={a}\int{e}^{−\left(\mathrm{1}/\left({x}/{a}\right)\right)^{\mathrm{2}} } {d}\left({x}/{a}\right)= \\ $$$$=\left[{a}\sqrt{\pi}{erf}\left(\frac{{a}}{{x}}\right)+{xe}^{−\left({a}/{x}\right)^{\mathrm{2}} } \right] \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−\left({a}/{x}\right)^{\mathrm{2}} } {dx}=−\left[{a}\sqrt{\pi}{erf}\left(\frac{{a}}{{x}}\right)+{xe}^{−\left({a}/{x}\right)^{\mathrm{2}} } \right]_{\infty} ^{\mathrm{0}} = \\ $$$$=−{a}\sqrt{\pi}+\underset{{x}\rightarrow\infty} {{lim}xe}^{−\left({a}/{x}\right)^{\mathrm{2}} } \\ $$$$\Omega=\int_{\mathrm{0}} ^{\infty} \left({e}^{−\frac{\mathrm{4}}{{x}^{\mathrm{2}} }} −{e}^{−\frac{\mathrm{9}}{{x}^{\mathrm{2}} }} \right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{2}/{x}\right)^{\mathrm{2}} } {dx}−\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{3}/{x}\right)^{\mathrm{2}} } {dx}= \\ $$$$=−\mathrm{2}\sqrt{\pi}+\mathrm{3}\sqrt{\pi}−\underset{{x}\rightarrow\infty} {{lim}}\left[{x}\left({e}^{−\left(\mathrm{3}/{x}\right)^{\mathrm{2}} } −{e}^{−\left(\mathrm{2}/{x}\right)^{\mathrm{2}} } \right)\right]= \\ $$$$=\sqrt{\pi}−\underset{{x}\rightarrow\infty} {{lim}}\left[{x}\left(\left(\mathrm{1}−\frac{\mathrm{9}}{{x}^{\mathrm{2}} }\right)−\left(\mathrm{1}−\frac{\mathrm{4}}{{x}^{\mathrm{2}} }\right)\right)\right] \\ $$$$=\sqrt{\pi}+\mathrm{5}\underset{{x}\rightarrow\infty} {{lim}}\left(\frac{\mathrm{1}}{{x}}\right)=\sqrt{\pi} \\ $$$$\Omega=\sqrt{\pi} \\ $$

Commented by mnjuly1970 last updated on 16/Oct/20

bravo  thank you so much..

$${bravo} \\ $$$${thank}\:{you}\:{so}\:{much}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com