Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 118376 by bramlexs22 last updated on 17/Oct/20

If a curve y = f(x) passing through  the point (1,2) is the solution  of differential equation  2x^2  dy = (2xy+y^2 )dx , then the   value of f(2) is equal to?

$${If}\:{a}\:{curve}\:{y}\:=\:{f}\left({x}\right)\:{passing}\:{through} \\ $$$${the}\:{point}\:\left(\mathrm{1},\mathrm{2}\right)\:{is}\:{the}\:{solution} \\ $$$${of}\:{differential}\:{equation} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:{dy}\:=\:\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dx}\:,\:{then}\:{the}\: \\ $$$${value}\:{of}\:{f}\left(\mathrm{2}\right)\:{is}\:{equal}\:{to}? \\ $$

Answered by benjo_mathlover last updated on 17/Oct/20

solving for differential equation  (dy/dx) = ((2xy+y^2 )/(2x^2 )). [ set y = zx ]   ⇒ x (dz/dx) + z = ((2x(zx)+z^2 x^2 )/(2x^2 ))  ⇒ x (dz/dx) + z = ((2z+z^2 )/2)  ⇒x(dz/dx) = (1/2)z^2  ; (dz/z^2 ) = (1/2) (dx/x)  ⇒−(1/z) = (1/2)ln (x)+c ; or   ⇒(x/y) = −(1/2)ln (x)−c ; substitute point(1,2)  ⇒(1/2)=−(1/2)ln (1)−c ; c = −(1/2)  thus (x/y) = −(1/2)ln (x)+(1/2)  ⇒((2x)/y)= 1−ln (x) or y = ((2x)/(1−ln (x)))  therefore f(2) = (4/(1−ln (2)))

$${solving}\:{for}\:{differential}\:{equation} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{xy}+{y}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} }.\:\left[\:{set}\:{y}\:=\:{zx}\:\right]\: \\ $$$$\Rightarrow\:{x}\:\frac{{dz}}{{dx}}\:+\:{z}\:=\:\frac{\mathrm{2}{x}\left({zx}\right)+{z}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{x}\:\frac{{dz}}{{dx}}\:+\:{z}\:=\:\frac{\mathrm{2}{z}+{z}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{x}\frac{{dz}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} \:;\:\frac{{dz}}{{z}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{dx}}{{x}} \\ $$$$\Rightarrow−\frac{\mathrm{1}}{{z}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}\right)+{c}\:;\:{or}\: \\ $$$$\Rightarrow\frac{{x}}{{y}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}\right)−{c}\:;\:{substitute}\:{point}\left(\mathrm{1},\mathrm{2}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{1}\right)−{c}\:;\:{c}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${thus}\:\frac{{x}}{{y}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({x}\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2}{x}}{{y}}=\:\mathrm{1}−\mathrm{ln}\:\left({x}\right)\:{or}\:{y}\:=\:\frac{\mathrm{2}{x}}{\mathrm{1}−\mathrm{ln}\:\left({x}\right)} \\ $$$${therefore}\:{f}\left(\mathrm{2}\right)\:=\:\frac{\mathrm{4}}{\mathrm{1}−\mathrm{ln}\:\left(\mathrm{2}\right)} \\ $$

Answered by TANMAY PANACEA last updated on 17/Oct/20

2x^2 dy−2xydx=y^2 dx  −2x(((ydx−xdy)/y^2 ))=dx  −2d((x/y))=(dx/x)  −2((x/y))=lnx+lnc  ln(xc)=((−2x)/y)  xc=e^(−((2x)/y))   1×c=e^(−((2×1)/2)) →c=e^(−1)   xe^(−1) =e^(−((2x)/y))   (lnx)+(−1)=((−2x)/y)  y=((−2x)/(−1+lnx))→f(2)=((−4)/(−1+ln2))=(4/(1−ln2))

$$\mathrm{2}{x}^{\mathrm{2}} {dy}−\mathrm{2}{xydx}={y}^{\mathrm{2}} {dx} \\ $$$$−\mathrm{2}{x}\left(\frac{{ydx}−{xdy}}{{y}^{\mathrm{2}} }\right)={dx} \\ $$$$−\mathrm{2}{d}\left(\frac{{x}}{{y}}\right)=\frac{{dx}}{{x}} \\ $$$$−\mathrm{2}\left(\frac{{x}}{{y}}\right)={lnx}+{lnc} \\ $$$${ln}\left({xc}\right)=\frac{−\mathrm{2}{x}}{{y}} \\ $$$${xc}={e}^{−\frac{\mathrm{2}{x}}{{y}}} \\ $$$$\mathrm{1}×{c}={e}^{−\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}} \rightarrow\boldsymbol{{c}}=\boldsymbol{{e}}^{−\mathrm{1}} \\ $$$$\boldsymbol{{xe}}^{−\mathrm{1}} =\boldsymbol{{e}}^{−\frac{\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{y}}}} \\ $$$$\left(\boldsymbol{{lnx}}\right)+\left(−\mathrm{1}\right)=\frac{−\mathrm{2}\boldsymbol{{x}}}{\boldsymbol{{y}}} \\ $$$$\boldsymbol{{y}}=\frac{−\mathrm{2}\boldsymbol{{x}}}{−\mathrm{1}+\boldsymbol{{lnx}}}\rightarrow{f}\left(\mathrm{2}\right)=\frac{−\mathrm{4}}{−\mathrm{1}+\boldsymbol{{ln}}\mathrm{2}}=\frac{\mathrm{4}}{\mathrm{1}−\boldsymbol{{ln}}\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com