Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 118391 by mathocean1 last updated on 17/Oct/20

show that if ^ a^2 +b^2  can be divised  by 7, a+b can also be divised by 7.

$${show}\:{that}\:{if}\:\:^{} {a}^{\mathrm{2}} +{b}^{\mathrm{2}} \:{can}\:{be}\:{divised} \\ $$$${by}\:\mathrm{7},\:{a}+{b}\:{can}\:{also}\:{be}\:{divised}\:{by}\:\mathrm{7}. \\ $$

Answered by mindispower last updated on 17/Oct/20

a^2 +b^2 =0(7)  ⇒a^2 =−b^2 (7)  ⇒a^2 =6b^2 (7)  ⇒b^2 =(0,1,4,2,)(7)  a^2 =(0,3,5,6)  a^2 =0⇒a=0  ⇒b=0⇒a+b=0(7)

$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{0}\left(\mathrm{7}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} =−{b}^{\mathrm{2}} \left(\mathrm{7}\right) \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\mathrm{6}{b}^{\mathrm{2}} \left(\mathrm{7}\right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\left(\mathrm{0},\mathrm{1},\mathrm{4},\mathrm{2},\right)\left(\mathrm{7}\right) \\ $$$${a}^{\mathrm{2}} =\left(\mathrm{0},\mathrm{3},\mathrm{5},\mathrm{6}\right) \\ $$$${a}^{\mathrm{2}} =\mathrm{0}\Rightarrow{a}=\mathrm{0} \\ $$$$\Rightarrow{b}=\mathrm{0}\Rightarrow{a}+{b}=\mathrm{0}\left(\mathrm{7}\right) \\ $$

Answered by 1549442205PVT last updated on 17/Oct/20

We prove the  stronger assert that:  a^2 +b^2 divisible by 7 if and only if a and   b are divisible by 7 simultaneously  Indeed,  ∀a,b∈Z we have a=7p+r_1 ,b=7q+r_2   with r_i ∈{0,±1,±2,±3}(i=1,2);p,q∈Z  Hence,a^2 +b^2 =(7p+r_1 )^2 +(7q+r_2 )^2   =49(p^2 +q^2 )+14(pr_1 +qr_2 )+r_1 ^2 +r_2 ^2   ⇒(a^2 +b^2 )⋮7⇔(r_1 ^2 +r_2 ^2 )⋮7(∗)  Since  r_i ∈{0,±1,±2,±3}(i=1,2),we get  r_i ^2 ∈{0,1,4,9}⇒(r_1 ^2 +r_2 ^2 )∈{0,1,2,16,17,  ,32,81,82,97,162}⇒(r_1 ^2 +r_2 ^2 )⋮7  ⇔r_1 ^2 +r_2 ^2 =0⇔r_1 =r_2 =0⇔a=7p,b=7q  Therefore,a^2 +b^2 ⋮7 if and only if  a and b divisible by 7 simultaneously  (q.e.d)

$$\mathrm{We}\:\mathrm{prove}\:\mathrm{the}\:\:\mathrm{stronger}\:\mathrm{assert}\:\mathrm{that}: \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{a}\:\mathrm{and} \\ $$$$\:\mathrm{b}\:\mathrm{are}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\:\mathrm{simultaneously} \\ $$$$\mathrm{Indeed}, \\ $$$$\forall\mathrm{a},\mathrm{b}\in\mathrm{Z}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}=\mathrm{7p}+\mathrm{r}_{\mathrm{1}} ,\mathrm{b}=\mathrm{7q}+\mathrm{r}_{\mathrm{2}} \\ $$$$\mathrm{with}\:\mathrm{r}_{\mathrm{i}} \in\left\{\mathrm{0},\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3}\right\}\left(\mathrm{i}=\mathrm{1},\mathrm{2}\right);\mathrm{p},\mathrm{q}\in\mathrm{Z} \\ $$$$\mathrm{Hence},\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\left(\mathrm{7p}+\mathrm{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{7q}+\mathrm{r}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$=\mathrm{49}\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} \right)+\mathrm{14}\left(\mathrm{pr}_{\mathrm{1}} +\mathrm{qr}_{\mathrm{2}} \right)+\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)\vdots\mathrm{7}\Leftrightarrow\left(\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} \right)\vdots\mathrm{7}\left(\ast\right) \\ $$$$\mathrm{Since}\:\:\mathrm{r}_{\mathrm{i}} \in\left\{\mathrm{0},\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3}\right\}\left(\mathrm{i}=\mathrm{1},\mathrm{2}\right),\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{r}_{\mathrm{i}} ^{\mathrm{2}} \in\left\{\mathrm{0},\mathrm{1},\mathrm{4},\mathrm{9}\right\}\Rightarrow\left(\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} \right)\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{16},\mathrm{17},\right. \\ $$$$\left.,\mathrm{32},\mathrm{81},\mathrm{82},\mathrm{97},\mathrm{162}\right\}\Rightarrow\left(\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} \right)\vdots\mathrm{7} \\ $$$$\Leftrightarrow\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{0}\Leftrightarrow\mathrm{r}_{\mathrm{1}} =\mathrm{r}_{\mathrm{2}} =\mathrm{0}\Leftrightarrow\mathrm{a}=\mathrm{7p},\mathrm{b}=\mathrm{7q} \\ $$$$\mathrm{Therefore},\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \vdots\mathrm{7}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}\:\mathrm{simultaneously} \\ $$$$\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com