All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 118466 by mathdave last updated on 17/Oct/20
solve∫01tan−1x1−x2dx
Answered by mathmax by abdo last updated on 17/Oct/20
lettakeatrywithseriesI=∫01arctanx1−x2dxchangementx=sintgiveI=∫0π2arctan(sint)costcostdt=∫0π2arctan(sint)dt=[tarctan(sint)]0π2−∫0π2t.cost1+sin2tdt=π28−∫0π2tcost1+sin2tdtchang.tan(t2)=ugive∫0π2tcost1+sin2tdt=∫012arctanu×1−u21+u21+4u21+u2×2du1+u2=4∫01(1−u2)arctanu(1+u2)(1+u2+4u2)du=4∫01(1−u2)arctanu(u2+1)(5u2+1)du=45×−54∫01(1−u2)arctanu{1u2+1−1u2+15}du=∫01(u2−1)arctanu1+u2du−∫01(u2−1)arctanuu2+15du∫01(u2−1)arctanu1+u2du=∫01(u2−1)arctanu(∑n=0∞(−1)nu2n)du=∑n=0∞(−1)n∫01(u2n+2−u2n)arctanudu=∑n=0∞(−1)nUnUn=∫01(u2n+2−u2n)arctanudu=[(u2n+32n+3−u2n+12n+1)arctanu]01−∫01(u2n+32n+3−u2n+12n+1)du1+u2=π4(12n+3−12n+1)+12n+1∫01u2n+11+u2du−12n+3∫01u2n+31+u2dualso∫01u2n+11+u2du=∫01u2n+1∑p=0∞(−1)pu2p=∑p=0∞(−1)p∫01u2n+2p+1=∑p=0∞(−1)p2n+2p+2and∫01u2n+31+u2du=∑p=0∞(−1)p2n+2p+4⇒Un=π4(12n+3−12n+1)+12(2n+1)∑p=0∞(−1)pn+p+1−12(2n+3)∑p=0∞(−1)pn+p+2⇒∫01(u2−1)arctanu1+u2du=π4∑n=0∞(−1)n2n+3−π4∑n=0∞(−1)n2n+1+12∑n=0∞(∑p=0∞(−1)p(2n+1)(n+p+1))−12∑n=0∞(∑p=0∞(−1)p(2n+3)(n+p+2))...becontinued...
Answered by TANMAY PANACEA last updated on 17/Oct/20
0<∫01tan−1x1−x2dx<∫01dx1−x20<I<∣sin−1x∣010<I<π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com