Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 118466 by mathdave last updated on 17/Oct/20

solve  ∫_0 ^1 ((tan^(−1) x)/(√(1−x^2 )))dx

solve01tan1x1x2dx

Answered by mathmax by abdo last updated on 17/Oct/20

let take a try with series   I =∫_0 ^1  ((arctanx)/(√(1−x^2 )))dx  changement x=sint give  I =∫_0 ^(π/2)  ((arctan(sint))/(cost))cost dt =∫_0 ^(π/2) arctan(sint)dt  =[t arctan(sint)]_0 ^(π/2) −∫_0 ^(π/2)    t .((cost)/(1+sin^2 t))dt  =(π^2 /8)−∫_0 ^(π/2)  ((t cost)/(1+sin^2 t))dt  chang.  tan((t/2))=u give  ∫_0 ^(π/2)  ((t cost)/(1+sin^2 t))dt =∫_0 ^1   ((2 arctanu×((1−u^2 )/(1+u^2 )))/(1+((4u^2 )/(1+u^2 ))))×((2du)/(1+u^2 ))  =4 ∫_0 ^1    (((1−u^2 )arctanu)/((1+u^2 )(  1+u^2  +4u^2 )))du =4 ∫_0 ^1  (((1−u^2  )arctanu)/((u^2 +1)(5u^2 +1)))du  =(4/5)×((−5)/4)∫_0 ^1 (1−u^2 )arctanu{(1/(u^2 +1))−(1/(u^2 +(1/5)))}du  =∫_0 ^1   (((u^2 −1)arctanu)/(1+u^2 ))du−∫_0 ^1 (((u^2 −1)arctanu)/(u^2 +(1/5)))du  ∫_0 ^1 (((u^2 −1)arctanu)/(1+u^2 ))du =∫_0 ^1 (u^2 −1)arctanu(Σ_(n=0) ^∞ (−1)^n u^(2n) )du  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 (u^(2n+2) −u^(2n) )arctanu du =Σ_(n=0) ^∞ (−1)^n  U_n   U_n =∫_0 ^1 (u^(2n+2) −u^(2n) )arctanu du=[((u^(2n+3) /(2n+3))−(u^(2n+1) /(2n+1)))arctanu]_0 ^1   −∫_0 ^1 ((u^(2n+3) /(2n+3))−(u^(2n+1) /(2n+1)))(du/(1+u^2 ))  =(π/4)((1/(2n+3))−(1/(2n+1))) +(1/(2n+1))∫_0 ^1  (u^(2n+1) /(1+u^2 ))du−(1/(2n+3))∫_0 ^1  (u^(2n+3) /(1+u^2 ))du also  ∫_0 ^1  (u^(2n+1) /(1+u^2 ))du =∫_0 ^1 u^(2n+1) Σ_(p=0) ^∞ (−1)^p  u^(2p) =Σ_(p=0) ^∞ (−1)^p ∫_0 ^1 u^(2n+2p+1)   =Σ_(p=0) ^∞ (((−1)^p )/(2n+2p+2)) and ∫_0 ^1  (u^(2n+3) /(1+u^2 ))du =Σ_(p=0) ^∞  (((−1)^p )/(2n+2p +4)) ⇒  U_n =(π/4)((1/(2n+3))−(1/(2n+1)))+(1/(2(2n+1)))Σ_(p=0) ^∞  (((−1)^p )/(n+p+1))  −(1/(2(2n+3)))Σ_(p=0) ^∞  (((−1)^p )/(n+p+2)) ⇒  ∫_0 ^1  (((u^2 −1)arctanu)/(1+u^2 ))du =(π/4)Σ_(n=0) ^∞  (((−1)^n )/(2n+3))−(π/4)Σ_(n=0) ^∞  (((−1)^n )/(2n+1))  +(1/2)Σ_(n=0) ^∞  (Σ_(p=0) ^∞  (((−1)^p )/((2n+1)(n+p+1))))−(1/2)Σ_(n=0) ^∞ (Σ_(p=0) ^∞ (((−1)^p )/((2n+3)(n+p+2))))  ...be continued...

lettakeatrywithseriesI=01arctanx1x2dxchangementx=sintgiveI=0π2arctan(sint)costcostdt=0π2arctan(sint)dt=[tarctan(sint)]0π20π2t.cost1+sin2tdt=π280π2tcost1+sin2tdtchang.tan(t2)=ugive0π2tcost1+sin2tdt=012arctanu×1u21+u21+4u21+u2×2du1+u2=401(1u2)arctanu(1+u2)(1+u2+4u2)du=401(1u2)arctanu(u2+1)(5u2+1)du=45×5401(1u2)arctanu{1u2+11u2+15}du=01(u21)arctanu1+u2du01(u21)arctanuu2+15du01(u21)arctanu1+u2du=01(u21)arctanu(n=0(1)nu2n)du=n=0(1)n01(u2n+2u2n)arctanudu=n=0(1)nUnUn=01(u2n+2u2n)arctanudu=[(u2n+32n+3u2n+12n+1)arctanu]0101(u2n+32n+3u2n+12n+1)du1+u2=π4(12n+312n+1)+12n+101u2n+11+u2du12n+301u2n+31+u2dualso01u2n+11+u2du=01u2n+1p=0(1)pu2p=p=0(1)p01u2n+2p+1=p=0(1)p2n+2p+2and01u2n+31+u2du=p=0(1)p2n+2p+4Un=π4(12n+312n+1)+12(2n+1)p=0(1)pn+p+112(2n+3)p=0(1)pn+p+201(u21)arctanu1+u2du=π4n=0(1)n2n+3π4n=0(1)n2n+1+12n=0(p=0(1)p(2n+1)(n+p+1))12n=0(p=0(1)p(2n+3)(n+p+2))...becontinued...

Answered by TANMAY PANACEA last updated on 17/Oct/20

0<∫_0 ^1 ((tan^(−1) x)/( (√(1−x^2 ))))dx<∫_0 ^1 (dx/( (√(1−x^2 ))))  0<I<∣sin^(−1) x∣_0 ^1   0<I<(π/2)

0<01tan1x1x2dx<01dx1x20<I<∣sin1x010<I<π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com