Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 118482 by peter frank last updated on 17/Oct/20

If the tangents at the  end of a focal  chord of  parabola meet the  tangent at the  vertex  in C,D.prove that CD  substends a right angle  at the focus

$$\mathrm{If}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{a}\:\mathrm{focal}\:\:\mathrm{chord}\:\mathrm{of} \\ $$$$\mathrm{parabola}\:\mathrm{meet}\:\mathrm{the} \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{the}\:\:\mathrm{vertex} \\ $$$$\mathrm{in}\:\mathrm{C},\mathrm{D}.\mathrm{prove}\:\mathrm{that}\:\mathrm{CD} \\ $$$$\mathrm{substends}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{focus} \\ $$

Answered by mr W last updated on 18/Oct/20

say vertex is the origin, the facus is  F(0,h), then the eqn. of parabola is  y=(x^2 /(4h))  say the focal chord is  y=h+mx    intersection with parabola:  (x^2 /(4h))=h+mx  x^2 −4mhx−4h^2 =0  ⇒x=2h(m±(√(m^2 +1)))    end point A:  x_A =2h(m−(√(m^2 +1)))  y_A =h+2hm(m−(√(m^2 +1)))  tangent at A:  (dy/dx)=(x/(2h))=m−(√(m^2 +1))  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  0=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  ⇒x=x_C =−(h/(m−(√(m^2 +1))))−2h(√(m^2 +1))    end point B:  x_B =2h(m+(√(m^2 +1)))  y_B =h+2hm(m+(√(m^2 +1)))  tangent at B:  y=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  0=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  ⇒x=x_D =−(h/(m+(√(m^2 +1))))+2h(√(m^2 +1))    inclination of CF:  m_(CF) =(h/(0−x_C ))=(1/((1/(m−(√(m^2 +1))))+2(√(m^2 +1))))  =((m−(√(m^2 +1)))/(1+2(√(m^2 +1))(m−(√(m^2 +1)))))  =((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1))  inclination of DF:  m_(DF) =(h/(0−x_D ))=(1/((1/(m+(√(m^2 +1))))−2(√(m^2 +1))))  =((m+(√(m^2 +1)))/(1−2(√(m^2 +1))(m+(√(m^2 +1)))))  =−((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1))    m_(CF) ×m_(DF) =−((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1))×((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1))  =−((m^2 −(m^2 +1))/((2m(√(m^2 +1)))^2 −(2m^2 +1)^2 ))  =−((−1)/(4m^4 +4m^2 −4m^4 −4m^2 −1))  =−1  ⇒CF⊥DF

$${say}\:{vertex}\:{is}\:{the}\:{origin},\:{the}\:{facus}\:{is} \\ $$$${F}\left(\mathrm{0},{h}\right),\:{then}\:{the}\:{eqn}.\:{of}\:{parabola}\:{is} \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}{h}} \\ $$$${say}\:{the}\:{focal}\:{chord}\:{is} \\ $$$${y}={h}+{mx} \\ $$$$ \\ $$$${intersection}\:{with}\:{parabola}: \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}{h}}={h}+{mx} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{mhx}−\mathrm{4}{h}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{2}{h}\left({m}\pm\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$${end}\:{point}\:{A}: \\ $$$${x}_{{A}} =\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${y}_{{A}} ={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${tangent}\:{at}\:{A}: \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}}{\mathrm{2}{h}}={m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\mathrm{0}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\Rightarrow{x}={x}_{{C}} =−\frac{{h}}{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$${end}\:{point}\:{B}: \\ $$$${x}_{{B}} =\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${y}_{{B}} ={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${tangent}\:{at}\:{B}: \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\mathrm{0}={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\Rightarrow{x}={x}_{{D}} =−\frac{{h}}{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$${inclination}\:{of}\:{CF}: \\ $$$${m}_{{CF}} =\frac{{h}}{\mathrm{0}−{x}_{{C}} }=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\mathrm{2}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$=\frac{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{1}+\mathrm{2}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)} \\ $$$$=\frac{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{m}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}−\mathrm{2}{m}^{\mathrm{2}} −\mathrm{1}} \\ $$$${inclination}\:{of}\:{DF}: \\ $$$${m}_{{DF}} =\frac{{h}}{\mathrm{0}−{x}_{{D}} }=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{2}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$=\frac{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{1}−\mathrm{2}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)} \\ $$$$=−\frac{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{m}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$${m}_{{CF}} ×{m}_{{DF}} =−\frac{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{m}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}−\mathrm{2}{m}^{\mathrm{2}} −\mathrm{1}}×\frac{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}{m}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$=−\frac{{m}^{\mathrm{2}} −\left({m}^{\mathrm{2}} +\mathrm{1}\right)}{\left(\mathrm{2}{m}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} −\left(\mathrm{2}{m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{−\mathrm{1}}{\mathrm{4}{m}^{\mathrm{4}} +\mathrm{4}{m}^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{4}} −\mathrm{4}{m}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=−\mathrm{1} \\ $$$$\Rightarrow{CF}\bot{DF} \\ $$

Commented by peter frank last updated on 18/Oct/20

diagram please

$$\mathrm{diagram}\:\mathrm{please} \\ $$

Commented by peter frank last updated on 18/Oct/20

thank you.i appriaciate  your time.

$$\mathrm{thank}\:\mathrm{you}.\mathrm{i}\:\mathrm{appriaciate} \\ $$$$\mathrm{your}\:\mathrm{time}. \\ $$

Commented by mr W last updated on 18/Oct/20

Commented by peter frank last updated on 18/Oct/20

GODBLESS YOU

$$\mathrm{GODBLESS}\:\mathrm{YOU} \\ $$

Commented by peter frank last updated on 18/Oct/20

where this came from  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]

$$\mathrm{where}\:\mathrm{this}\:\mathrm{came}\:\mathrm{from} \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$

Commented by mr W last updated on 18/Oct/20

point C(x_C ,y_C )  x_C =2h(m−(√(m^2 +1)))  y_C =h+mx_C =h+2hm(m−(√(m^2 +1)))  the inclination of tangent at C is  m_C =m−(√(m^2 +1))  ⇒the eqn. of tangent at C is  y=y_C +m_C (x−x_C )  ⇒y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]

$${point}\:{C}\left({x}_{{C}} ,{y}_{{C}} \right) \\ $$$${x}_{{C}} =\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${y}_{{C}} ={h}+{mx}_{{C}} ={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${the}\:{inclination}\:{of}\:{tangent}\:{at}\:{C}\:{is} \\ $$$${m}_{{C}} ={m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{the}\:{eqn}.\:{of}\:{tangent}\:{at}\:{C}\:{is} \\ $$$${y}={y}_{{C}} +{m}_{{C}} \left({x}−{x}_{{C}} \right) \\ $$$$\Rightarrow{y}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com