All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 118485 by bramlexs22 last updated on 18/Oct/20
Ifpartialfraction10x2+px+182x3+5x2+x−2canbewrittenasq2x−1+4x+2+rx+1.Thenfindthevalueofp−q+2r.
Answered by benjo_mathlover last updated on 18/Oct/20
⇒10x2+px+182x3+5x2+x−2≡q2x−1+4x+2+rx+1wefirstfindthevalueofp.⇒4=[10x2+px+18(2x−1)(x+1)]x=−2⇒4=[40−2p+18(−1)(−5)]=58−2p5⇒20=58−2p;p=19nowwefindthevalueofqandr.⇒q=[10x2+19x+18(x+2)(x+1)]x=12⇒q=[52+192+18(52)(32)]=4×3015=8⇒r=[10x2+19x+18(2x−1)(x+2)]x=−1⇒r=[10−19+18(−3)(1)]=9−3=−3Thusthevalueofp−q+2r=19−8−6=5
Answered by 1549442205PVT last updated on 18/Oct/20
10x2+px+182x3+5x2+x−2=q2x−1+4x+2+rx+1.⇔10x2+px+18=qx2+3qx+2q+8x2+4x−4+2rx2+3rx−r⇔10x2+px+18=(q+2r+8)x2+(3q+3r+4)x+2q−2r−4⇔{q+2r+8=10(1)3q+3r+4=p(2)2q−2r−4=18(3)Adding(3)to(1)weget3q+4=28⇒q=8,replaceinto(1)wegetr=−3,replaceinto(2)wegetp=3.8−3.3+4=19Thus,(p,q,r)=(19,8,−3)Therefore,p−q+2r=5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com