Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 118485 by bramlexs22 last updated on 18/Oct/20

If partial fraction   ((10x^2 +px+18)/(2x^3 +5x^2 +x−2)) can be written  as (q/(2x−1)) + (4/(x+2)) + (r/(x+1)). Then find the  value of p−q+2r .

$${If}\:{partial}\:{fraction}\: \\ $$$$\frac{\mathrm{10}{x}^{\mathrm{2}} +{px}+\mathrm{18}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:{can}\:{be}\:{written} \\ $$$${as}\:\frac{{q}}{\mathrm{2}{x}−\mathrm{1}}\:+\:\frac{\mathrm{4}}{{x}+\mathrm{2}}\:+\:\frac{{r}}{{x}+\mathrm{1}}.\:{Then}\:{find}\:{the} \\ $$$${value}\:{of}\:{p}−{q}+\mathrm{2}{r}\:. \\ $$

Answered by benjo_mathlover last updated on 18/Oct/20

⇒ ((10x^2 +px+18)/(2x^3 +5x^2 +x−2)) ≡ (q/(2x−1)) + (4/(x+2)) + (r/(x+1))  we first find the value of p.  ⇒ 4 = [ ((10x^2 +px+18)/((2x−1)(x+1))) ]_(x = −2)   ⇒ 4 = [ ((40−2p+18)/((−1)(−5))) ] = ((58−2p)/5)  ⇒20 = 58−2p ; p = 19   now we find the value of q and r.  ⇒q = [ ((10x^2 +19x+18)/((x+2)(x+1))) ]_(x = (1/2))   ⇒q = [ (((5/2)+((19)/2)+18)/(((5/2))((3/2)))) ] = ((4×30)/(15)) = 8  ⇒r = [ ((10x^2 +19x+18)/((2x−1)(x+2))) ]_(x = −1)   ⇒r = [ ((10−19+18)/((−3)(1))) ] = (9/(−3)) = −3   Thus the value of p−q+2r = 19−8−6= 5

$$\Rightarrow\:\frac{\mathrm{10}{x}^{\mathrm{2}} +{px}+\mathrm{18}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:\equiv\:\frac{{q}}{\mathrm{2}{x}−\mathrm{1}}\:+\:\frac{\mathrm{4}}{{x}+\mathrm{2}}\:+\:\frac{{r}}{{x}+\mathrm{1}} \\ $$$${we}\:{first}\:{find}\:{the}\:{value}\:{of}\:{p}. \\ $$$$\Rightarrow\:\mathrm{4}\:=\:\left[\:\frac{\mathrm{10}{x}^{\mathrm{2}} +{px}+\mathrm{18}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}\:\right]_{{x}\:=\:−\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{4}\:=\:\left[\:\frac{\mathrm{40}−\mathrm{2}{p}+\mathrm{18}}{\left(−\mathrm{1}\right)\left(−\mathrm{5}\right)}\:\right]\:=\:\frac{\mathrm{58}−\mathrm{2}{p}}{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{20}\:=\:\mathrm{58}−\mathrm{2}{p}\:;\:{p}\:=\:\mathrm{19}\: \\ $$$${now}\:{we}\:{find}\:{the}\:{value}\:{of}\:{q}\:{and}\:{r}. \\ $$$$\Rightarrow{q}\:=\:\left[\:\frac{\mathrm{10}{x}^{\mathrm{2}} +\mathrm{19}{x}+\mathrm{18}}{\left({x}+\mathrm{2}\right)\left({x}+\mathrm{1}\right)}\:\right]_{{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\Rightarrow{q}\:=\:\left[\:\frac{\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{19}}{\mathrm{2}}+\mathrm{18}}{\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\:\right]\:=\:\frac{\mathrm{4}×\mathrm{30}}{\mathrm{15}}\:=\:\mathrm{8} \\ $$$$\Rightarrow{r}\:=\:\left[\:\frac{\mathrm{10}{x}^{\mathrm{2}} +\mathrm{19}{x}+\mathrm{18}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right)}\:\right]_{{x}\:=\:−\mathrm{1}} \\ $$$$\Rightarrow{r}\:=\:\left[\:\frac{\mathrm{10}−\mathrm{19}+\mathrm{18}}{\left(−\mathrm{3}\right)\left(\mathrm{1}\right)}\:\right]\:=\:\frac{\mathrm{9}}{−\mathrm{3}}\:=\:−\mathrm{3}\: \\ $$$${Thus}\:{the}\:{value}\:{of}\:{p}−{q}+\mathrm{2}{r}\:=\:\mathrm{19}−\mathrm{8}−\mathrm{6}=\:\mathrm{5}\: \\ $$

Answered by 1549442205PVT last updated on 18/Oct/20

((10x^2 +px+18)/(2x^3 +5x^2 +x−2))= (q/(2x−1)) + (4/(x+2)) + (r/(x+1)).  ⇔10x^2 +px+18=qx^2 +3qx+2q+8x^2 +4x−4+2rx^2 +3rx−r  ⇔10x^2 +px+18=(q+2r+8)x^2 +(3q+3r+4)x+2q−2r−4  ⇔ { ((q+2r+8=10(1))),((3q+3r+4=p(2))),((2q−2r−4=18(3))) :}  Adding (3)to(1)  we get 3q+4=28⇒q=8,replace  into (1)we get r=−3,replace into (2)  we get p=3.8−3.3+4=19  Thus,(p,q,r)=(19,8,−3)   Therefore,         p−q+2r=5

$$\frac{\mathrm{10}{x}^{\mathrm{2}} +{px}+\mathrm{18}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +{x}−\mathrm{2}}=\:\frac{{q}}{\mathrm{2}{x}−\mathrm{1}}\:+\:\frac{\mathrm{4}}{{x}+\mathrm{2}}\:+\:\frac{{r}}{{x}+\mathrm{1}}. \\ $$$$\Leftrightarrow\mathrm{10x}^{\mathrm{2}} +\mathrm{px}+\mathrm{18}=\mathrm{qx}^{\mathrm{2}} +\mathrm{3qx}+\mathrm{2q}+\mathrm{8x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{4}+\mathrm{2rx}^{\mathrm{2}} +\mathrm{3rx}−\mathrm{r} \\ $$$$\Leftrightarrow\mathrm{10x}^{\mathrm{2}} +\mathrm{px}+\mathrm{18}=\left(\mathrm{q}+\mathrm{2r}+\mathrm{8}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{3q}+\mathrm{3r}+\mathrm{4}\right)\mathrm{x}+\mathrm{2q}−\mathrm{2r}−\mathrm{4} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{q}+\mathrm{2r}+\mathrm{8}=\mathrm{10}\left(\mathrm{1}\right)}\\{\mathrm{3q}+\mathrm{3r}+\mathrm{4}=\mathrm{p}\left(\mathrm{2}\right)}\\{\mathrm{2q}−\mathrm{2r}−\mathrm{4}=\mathrm{18}\left(\mathrm{3}\right)}\end{cases} \\ $$$$\mathrm{Adding}\:\left(\mathrm{3}\right)\mathrm{to}\left(\mathrm{1}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{3q}+\mathrm{4}=\mathrm{28}\Rightarrow\mathrm{q}=\mathrm{8},\mathrm{replace} \\ $$$$\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{r}=−\mathrm{3},\mathrm{replace}\:\mathrm{into}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{p}=\mathrm{3}.\mathrm{8}−\mathrm{3}.\mathrm{3}+\mathrm{4}=\mathrm{19} \\ $$$$\mathrm{Thus},\left(\mathrm{p},\mathrm{q},\mathrm{r}\right)=\left(\mathrm{19},\mathrm{8},−\mathrm{3}\right) \\ $$$$\:\mathrm{Therefore},\:\:\:\:\:\:\:\:\:\mathrm{p}−\mathrm{q}+\mathrm{2r}=\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com