Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118668 by bemath last updated on 19/Oct/20

  ∫ ((x∣sin x∣)/(1+cos^2 x)) dx ?

$$\:\:\int\:\frac{{x}\mid\mathrm{sin}\:{x}\mid}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$

Answered by Lordose last updated on 19/Oct/20

Ω=∫ ((x∣sinx∣)/(sin^2 x))dx  Ω=∫x∣cosecx∣dx   IBP {u=x dv=cosecxdx}  Ω = xln∣tan((x/2))∣ − ∫ln∣tan((x/2))∣dx  Δ=∫ln∣tan((x/2))∣dx  Δ=2∫ln∣tan(u)∣du  {u=(x/2)}  Δ=2∫ln∣((−ie^(iu) (1−e^(−2iu) ))/(e^(iu) (1+e^(−2iu) )))∣du  Δ=2(∫ln∣−i∣du + ∫ln∣1−e^(2iu) ∣du − ∫ln∣1+e^(−2iu) ∣du)  y=e^(−2iu)  ⇒ du=((idy)/(2y))  Δ = 2(((iπu)/2)  + (i/2)∫ ((ln∣1−y∣)/y)dy − (i/2)∫ ((ln∣1−y∣)/y)dy  Δ= iπu + iLi_2 (y)−iLi_2 (−y) + C  Δ=i(πu + Li_2 (e^(−2iu) ) − Li_2 (−e^(−2iu) ))+ C  Ω= xln∣tan((x/2))∣−i(((πx)/2) + Li_2 (e^(−ix) ) − Li_2 (−e^(ix) )) + C  Check for errors!

$$\Omega=\int\:\frac{\mathrm{x}\mid\mathrm{sinx}\mid}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$\Omega=\int\mathrm{x}\mid\mathrm{cosecx}\mid\mathrm{dx}\: \\ $$$$\mathrm{IBP}\:\left\{\mathrm{u}=\mathrm{x}\:\mathrm{dv}=\mathrm{cosecxdx}\right\} \\ $$$$\Omega\:=\:\mathrm{xln}\mid\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mid\:−\:\int\mathrm{ln}\mid\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mid\mathrm{dx} \\ $$$$\Delta=\int\mathrm{ln}\mid\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mid\mathrm{dx} \\ $$$$\Delta=\mathrm{2}\int\mathrm{ln}\mid\mathrm{tan}\left(\mathrm{u}\right)\mid\mathrm{du}\:\:\left\{\mathrm{u}=\frac{\mathrm{x}}{\mathrm{2}}\right\} \\ $$$$\Delta=\mathrm{2}\int\mathrm{ln}\mid\frac{−\mathrm{ie}^{\mathrm{iu}} \left(\mathrm{1}−\mathrm{e}^{−\mathrm{2iu}} \right)}{\mathrm{e}^{\mathrm{iu}} \left(\mathrm{1}+\mathrm{e}^{−\mathrm{2iu}} \right)}\mid\mathrm{du} \\ $$$$\Delta=\mathrm{2}\left(\int\mathrm{ln}\mid−\boldsymbol{\mathrm{i}}\mid\mathrm{du}\:+\:\int\mathrm{ln}\mid\mathrm{1}−\mathrm{e}^{\mathrm{2iu}} \mid\mathrm{du}\:−\:\int\mathrm{ln}\mid\mathrm{1}+\mathrm{e}^{−\mathrm{2iu}} \mid\mathrm{du}\right) \\ $$$$\mathrm{y}=\mathrm{e}^{−\mathrm{2iu}} \:\Rightarrow\:\mathrm{du}=\frac{\mathrm{idy}}{\mathrm{2y}} \\ $$$$\Delta\:=\:\mathrm{2}\left(\frac{\mathrm{i}\pi\mathrm{u}}{\mathrm{2}}\:\:+\:\frac{\mathrm{i}}{\mathrm{2}}\int\:\frac{\mathrm{ln}\mid\mathrm{1}−\mathrm{y}\mid}{\mathrm{y}}\mathrm{dy}\:−\:\frac{\mathrm{i}}{\mathrm{2}}\int\:\frac{\mathrm{ln}\mid\mathrm{1}−\mathrm{y}\mid}{\mathrm{y}}\mathrm{dy}\right. \\ $$$$\Delta=\:\mathrm{i}\pi\mathrm{u}\:+\:\mathrm{iLi}_{\mathrm{2}} \left(\mathrm{y}\right)−\mathrm{iLi}_{\mathrm{2}} \left(−\mathrm{y}\right)\:+\:\mathrm{C} \\ $$$$\Delta=\mathrm{i}\left(\pi\mathrm{u}\:+\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{e}^{−\mathrm{2iu}} \right)\:−\:\mathrm{Li}_{\mathrm{2}} \left(−\mathrm{e}^{−\mathrm{2iu}} \right)\right)+\:\mathrm{C} \\ $$$$\Omega=\:\mathrm{xln}\mid\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mid−\mathrm{i}\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\:+\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{e}^{−\mathrm{ix}} \right)\:−\:\mathrm{Li}_{\mathrm{2}} \left(−\mathrm{e}^{\mathrm{ix}} \right)\right)\:+\:\mathrm{C} \\ $$$$\mathrm{Check}\:\mathrm{for}\:\mathrm{errors}! \\ $$

Commented by bemath last updated on 19/Oct/20

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com