Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118674 by mathace last updated on 19/Oct/20

Please integrate  ∫_0 ^1 (1/(1+x^c ))dx where c is a constant.

$${Please}\:{integrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }{dx}\:{where}\:{c}\:{is}\:{a}\:{constant}. \\ $$

Answered by Dwaipayan Shikari last updated on 19/Oct/20

∫_0 ^1 Σ_(n=0) ^∞ (−1)^n .x^(nc) dx  Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(nc) dx         [ (1/(1+x^c ))=Σ_(n=0) ^∞ (−1)^n .x^(nc) ]  Σ_(n=0) ^∞ (−1)^n [(x^(nc+1) /(nc+1))]_0 ^1   Σ_(n=0) ^∞ (−1)^n .(1/(nc+1))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .{x}^{{nc}} {dx} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{nc}} {dx}\:\:\:\:\:\:\:\:\:\left[\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .{x}^{{nc}} \right] \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left[\frac{{x}^{{nc}+\mathrm{1}} }{{nc}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .\frac{\mathrm{1}}{{nc}+\mathrm{1}} \\ $$

Commented by Dwaipayan Shikari last updated on 19/Oct/20

When  c=2  Σ_(n=0) ^∞ (−1)^n (1/(2n+1))=1−(1/3)+(1/5)−(1/7)+...=(π/4)  ∫_0 ^1 (1/(1+x^2 ))dx=[tan^(−1) x]_0 ^1 =(π/4)

$${When} \\ $$$${c}=\mathrm{2} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+...=\frac{\pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\left[{tan}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{4}} \\ $$

Commented by mathace last updated on 19/Oct/20

Can you explain details how it comes  (1/(1+x^c ))= Σ_(n=0) ^∞ (−1)^n .x^(nc)   sir?

$${Can}\:{you}\:{explain}\:{details}\:{how}\:{it}\:{comes} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .{x}^{{nc}} \:\:{sir}? \\ $$

Commented by Dwaipayan Shikari last updated on 19/Oct/20

1+x+x^2 +x^3 +x^4 +.....=(1/(1−x))=(T_1 /(1−R))         (T_1 = first term  R=common Ratio)  Σ_(n=0) ^∞ (−1)^n x^n =1−x+x^2 −x^3 +x^4 −x^5 +...=(1/(1+x))     (Here common Ratio (−x))  1−x^c +x^(2c) −x^(3c) +...=(1/(1+x^c ))   (Common Ratio (−x^c )  Σ_(n=0) ^∞ (−1)^n x^(nc) =(1/(1+x^c ))

$$\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +.....=\frac{\mathrm{1}}{\mathrm{1}−{x}}=\frac{{T}_{\mathrm{1}} }{\mathrm{1}−{R}}\:\:\:\:\:\:\:\:\:\left({T}_{\mathrm{1}} =\:{first}\:{term}\:\:{R}={common}\:{Ratio}\right) \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} =\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +{x}^{\mathrm{4}} −{x}^{\mathrm{5}} +...=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:\:\:\:\:\left({Here}\:{common}\:{Ratio}\:\left(−{x}\right)\right) \\ $$$$\mathrm{1}−{x}^{{c}} +{x}^{\mathrm{2}{c}} −{x}^{\mathrm{3}{c}} +...=\frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }\:\:\:\left({Common}\:{Ratio}\:\left(−{x}^{{c}} \right)\right. \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {x}^{{nc}} =\frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} } \\ $$

Commented by mathace last updated on 19/Oct/20

Wow! great. Thank you. Valid for ∣x∣<1

$${Wow}!\:{great}.\:{Thank}\:{you}.\:{Valid}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$

Commented by Dwaipayan Shikari last updated on 19/Oct/20

yes!

$${yes}! \\ $$

Commented by Ar Brandon last updated on 19/Oct/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com