Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118705 by Lordose last updated on 19/Oct/20

    ... ⧫Advanced Calculus⧫...    Evaluate::    Ω = ∫_0 ^(  1 ) ((sin^(−1) (x))/(1+x^2 ))dx    ...♠L𝛗rD ∅sE♠...    ...♣GooD LucK♣

$$ \\ $$$$ \\ $$$$...\:\blacklozenge\mathrm{Advanced}\:\mathrm{Calculus}\blacklozenge... \\ $$$$ \\ $$$$\mathrm{Evaluate}:: \\ $$$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{1}\:} \frac{\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$ \\ $$$$...\spadesuit\boldsymbol{\mathrm{L}\phi\mathrm{rD}}\:\boldsymbol{\varnothing\mathrm{sE}}\spadesuit... \\ $$$$ \\ $$$$...\clubsuit\boldsymbol{\mathrm{GooD}}\:\boldsymbol{\mathrm{LucK}}\clubsuit \\ $$

Answered by mathdave last updated on 19/Oct/20

solution  let I=∫_0 ^1 ((sin^(−1) x)/(1+x^2 ))dx   (put y=sin^(−1) x)  I=∫_0 ^(π/2) ((ycosy)/(1+sin^2 y))dy  (using IBP)  I=(ytan^(−1) (siny))_0 ^(π/2) −∫_0 ^(π/2) tan^(−1) (siny)dy  I=(π^2 /8)−∫_0 ^(π/2) tan^(−1) (siny)dy  according to legendary chi−function  ∫_0 ^(π/2) tan^(−1) (rsinθ)dθ=2χ_2 ((((√(1+r^2 ))−1)/r))  if r=1  then  ∫_0 ^(π/2) tan^(−1) (siny)dy=2χ_2 ((√2)−1)  ∵note that χ_v (z)=(1/2)(Li_v (z)−Li_v (−z))  then  χ_2 ((√2)−1)=(1/2)(Li_2 ((√2)−1)−Li_2 (1−(√2)))  ∵∫_0 ^(π/2) tan^(−1) (siny)dy=2∙(1/2)(Li_2 ((√2)−1)−Li_2 (1−(√2)))  ∵I=(π^2 /8)−(Li_2 ((√2)−1)−Li_2 (1−(√2)))  ∵∫_0 ^1 ((sin^(−1) (x))/(1+x^2 ))dx=(π^2 /8)−(Li_2 ((√2)−1)−Li_2 (1−(√2))=0.38841  OR    legendary chi−function of  2χ_2 ((√2)−1)=2((π^2 /(16))−((ln^2 ((√2)+1))/4))=(π^2 /8)−((ln^2 ((√2)+1))/2)  ∵∫_0 ^(π/2) tan^(−1) (siny)dy=((π^2 /8)−((ln^2 ((√2)+1))/2))  ∵I=(π^2 /8)−((π^2 /8)−((ln^2 ((√2)+1))/2))=((ln^2 ((√2)+1))/2)  ∵∫_0 ^1 ((sin^(−1) (x))/(1+x^2 ))dx=((ln^2 ((√2)+1))/2)=0.38841  the two answer are correct   by mathdave(19/10/2020)

$${solution} \\ $$$${let}\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}^{−\mathrm{1}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\left({put}\:{y}=\mathrm{sin}^{−\mathrm{1}} {x}\right) \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{y}\mathrm{cos}{y}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} {y}}{dy}\:\:\left({using}\:{IBP}\right) \\ $$$${I}=\left({y}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right)\right)_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right){dy} \\ $$$${I}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right){dy} \\ $$$${according}\:{to}\:{legendary}\:{chi}−{function} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left({r}\mathrm{sin}\theta\right){d}\theta=\mathrm{2}\chi_{\mathrm{2}} \left(\frac{\sqrt{\mathrm{1}+{r}^{\mathrm{2}} }−\mathrm{1}}{{r}}\right) \\ $$$${if}\:{r}=\mathrm{1}\:\:{then} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right){dy}=\mathrm{2}\chi_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$\because{note}\:{that}\:\chi_{{v}} \left({z}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({Li}_{{v}} \left({z}\right)−{Li}_{{v}} \left(−{z}\right)\right) \\ $$$${then} \\ $$$$\chi_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({Li}_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\right) \\ $$$$\because\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right){dy}=\mathrm{2}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\left({Li}_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\right) \\ $$$$\because{I}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\left({Li}_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\left({Li}_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)=\mathrm{0}.\mathrm{38841}\right. \\ $$$${OR}\: \\ $$$$\:{legendary}\:{chi}−{function}\:{of} \\ $$$$\mathrm{2}\chi_{\mathrm{2}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\mathrm{2}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{4}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\because\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sin}{y}\right){dy}=\left(\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}}\right) \\ $$$$\because{I}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\left(\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}}\right)=\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{0}.\mathrm{38841} \\ $$$${the}\:{two}\:{answer}\:{are}\:{correct}\: \\ $$$${by}\:{mathdave}\left(\mathrm{19}/\mathrm{10}/\mathrm{2020}\right) \\ $$

Commented by Lordose last updated on 19/Oct/20

Nice one sir

$$\mathrm{Nice}\:\mathrm{one}\:\mathrm{sir} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Answered by mindispower last updated on 19/Oct/20

x=sin(t)  Ω=∫_0 ^(π/2) ((tcos(t))/(1+sin^2 (t)))=[tarctan(sin(t))]−∫_0 ^(π/2) arctan(sin(t))dt  =(π^2 /8)−∫_0 ^1 ((arctan(r))/( (√(1−r^2 ))))dr  f(s)=∫_0 ^1 ((arctan(sr))/( (√(1−r^2 ))))dr,f(0)=0    f′(s)=∫_0 ^1 (r/( (√(1−r^2  )) (1+s^2 r^2 )))dr,r=sin(x)  f′(s)=∫_0 ^(π/2) ((sin(x))/(1+s^2 sin^2 (x)))=∫_0 ^(π/2) ((sin(x))/(1+s^2 −s^2 cos^2 (x)))  =−(1/( s(√(1+s^2 ))))∫_0 ((s(−sin(x))dx)/( (√(1+s^2 )) (1−((s/( (√(1+s^2 ))))cos(x))^2 ))  =−(1/(s(√(1+s^2 ))))[arcth((s/( (√(1+s^2 ))))cos(x))]_0 ^(π/2)   =(1/(s(√(1+s^2 ))))arcth((s/( (√(1+s^2 )))))=f′(s)  f(s)=∫_0 ^s (1/( s(√(1+s^2 ))))arcth((s/( (√(1+s^2 )))))  we want f(1)  f(1)=∫_0 ^1 (1/(s(√(1+s^2 ))))arcth((s/( (√(1+s^2 )))))  let s=sh(t)⇒f(1)=∫_0 ^(sh^− (1)) ((arcth(((sh(t))/(ch(t))))ch(t)dt)/(sh(t)ch(t)))  =∫_0 ^(sh^− (1)) (t/(sh(t)))dt...by part  ∫(1/(sh(t)))=ln(1−e^(−t) )−ln(1+e^(−t) )  f(1)=[tln(((1−e^(−t) )/(1+e^(−t) )))]_0 ^(sh^− (t)) −∫_0 ^(sh^− (1)) ln(1−e^(−t) )dt  +∫_0 ^(sh^− (t)) ln(1+e^(−t) )  ∫_0 ^(sh^− (1)) ln(1−e^(−t) )dt,e^(−t) =w  =∫_1 ^e^(−sh^− (1))  ((ln(1−w))/(−w))dw=∫_0 ^1 ((ln(1−w))/w)−∫_0 ^e^(−sh^− (1))  ((ln(1−w))/w)dw  =Li_2 (e^(−sh^− (1)) )−Li_2 (1)  ∫_0 ^e^(−sh^− (1))  ln(1+e^(−t) )dt,e^(−t) =−w  ⇒∫_(−1) ^(−e^(−sh^− (1)) ) ((ln(1−w)dw)/(−w))=Li_2 (−e^(−sh^− (1)) )−li_2 (−1)  we get,a=sh^− (1)  f(1)=aln(((1−e^(−a) )/(1+e^(−a) )))+Li_2 (−e^(−a) )−li_2 (−1)−Li_2 (e^(−a) )+Li_2 (1)  Li_2 (1)=ζ(1)=(π^2 /6),li_2 (−1)=−(π^2 /(12))  f(1)=(π^2 /4)+Li_2 (−e^(−a) )−Li_2 (e^(−a) )+aln(((1−e^(−a) )/(1+e^(−a) )))  Ω=(π^2 /8)−f(1).. i will try if there is possibility  to give Li_2 (...)−Li_2 (...) by elementry function

$${x}={sin}\left({t}\right) \\ $$$$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{tcos}\left({t}\right)}{\mathrm{1}+{sin}^{\mathrm{2}} \left({t}\right)}=\left[{tarctan}\left({sin}\left({t}\right)\right)\right]−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {arctan}\left({sin}\left({t}\right)\right){dt} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arctan}\left({r}\right)}{\:\sqrt{\mathrm{1}−{r}^{\mathrm{2}} }}{dr} \\ $$$${f}\left({s}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arctan}\left({sr}\right)}{\:\sqrt{\mathrm{1}−{r}^{\mathrm{2}} }}{dr},{f}\left(\mathrm{0}\right)=\mathrm{0}\:\: \\ $$$${f}'\left({s}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{r}}{\:\sqrt{\mathrm{1}−{r}^{\mathrm{2}} \:}\:\left(\mathrm{1}+{s}^{\mathrm{2}} {r}^{\mathrm{2}} \right)}{dr},{r}={sin}\left({x}\right) \\ $$$${f}'\left({s}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}\right)}{\mathrm{1}+{s}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({x}\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}\right)}{\mathrm{1}+{s}^{\mathrm{2}} −{s}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({x}\right)} \\ $$$$=−\frac{\mathrm{1}}{\:{s}\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}\int_{\mathrm{0}} \frac{{s}\left(−{sin}\left({x}\right)\right){dx}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }\:\left(\mathrm{1}−\left(\frac{{s}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}{cos}\left({x}\right)\right)^{\mathrm{2}} \right.} \\ $$$$=−\frac{\mathrm{1}}{{s}\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}\left[{arcth}\left(\frac{{s}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}{cos}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{{s}\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}{arcth}\left(\frac{{s}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}\right)={f}'\left({s}\right) \\ $$$${f}\left({s}\right)=\int_{\mathrm{0}} ^{{s}} \frac{\mathrm{1}}{\:{s}\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}{arcth}\left(\frac{{s}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}\right) \\ $$$${we}\:{want}\:{f}\left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{s}\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}{arcth}\left(\frac{{s}}{\:\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }}\right) \\ $$$${let}\:{s}={sh}\left({t}\right)\Rightarrow{f}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{{sh}^{−} \left(\mathrm{1}\right)} \frac{{arcth}\left(\frac{{sh}\left({t}\right)}{{ch}\left({t}\right)}\right){ch}\left({t}\right){dt}}{{sh}\left({t}\right){ch}\left({t}\right)} \\ $$$$=\int_{\mathrm{0}} ^{{sh}^{−} \left(\mathrm{1}\right)} \frac{{t}}{{sh}\left({t}\right)}{dt}...{by}\:{part} \\ $$$$\int\frac{\mathrm{1}}{{sh}\left({t}\right)}={ln}\left(\mathrm{1}−{e}^{−{t}} \right)−{ln}\left(\mathrm{1}+{e}^{−{t}} \right) \\ $$$${f}\left(\mathrm{1}\right)=\left[{tln}\left(\frac{\mathrm{1}−{e}^{−{t}} }{\mathrm{1}+{e}^{−{t}} }\right)\right]_{\mathrm{0}} ^{{sh}^{−} \left({t}\right)} −\int_{\mathrm{0}} ^{{sh}^{−} \left(\mathrm{1}\right)} {ln}\left(\mathrm{1}−{e}^{−{t}} \right){dt} \\ $$$$+\int_{\mathrm{0}} ^{{sh}^{−} \left({t}\right)} {ln}\left(\mathrm{1}+{e}^{−{t}} \right) \\ $$$$\int_{\mathrm{0}} ^{{sh}^{−} \left(\mathrm{1}\right)} {ln}\left(\mathrm{1}−{e}^{−{t}} \right){dt},{e}^{−{t}} ={w} \\ $$$$=\int_{\mathrm{1}} ^{{e}^{−{sh}^{−} \left(\mathrm{1}\right)} } \frac{{ln}\left(\mathrm{1}−{w}\right)}{−{w}}{dw}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{w}\right)}{{w}}−\int_{\mathrm{0}} ^{{e}^{−{sh}^{−} \left(\mathrm{1}\right)} } \frac{{ln}\left(\mathrm{1}−{w}\right)}{{w}}{dw} \\ $$$$={Li}_{\mathrm{2}} \left({e}^{−{sh}^{−} \left(\mathrm{1}\right)} \right)−\boldsymbol{{L}}{i}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{{e}^{−{sh}^{−} \left(\mathrm{1}\right)} } {ln}\left(\mathrm{1}+{e}^{−{t}} \right){dt},{e}^{−{t}} =−{w} \\ $$$$\Rightarrow\int_{−\mathrm{1}} ^{−{e}^{−{sh}^{−} \left(\mathrm{1}\right)} } \frac{{ln}\left(\mathrm{1}−{w}\right){dw}}{−{w}}={Li}_{\mathrm{2}} \left(−{e}^{−{sh}^{−} \left(\mathrm{1}\right)} \right)−{li}_{\mathrm{2}} \left(−\mathrm{1}\right) \\ $$$${we}\:{get},{a}={sh}^{−} \left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{1}\right)={aln}\left(\frac{\mathrm{1}−{e}^{−{a}} }{\mathrm{1}+{e}^{−{a}} }\right)+{Li}_{\mathrm{2}} \left(−{e}^{−{a}} \right)−{li}_{\mathrm{2}} \left(−\mathrm{1}\right)−{Li}_{\mathrm{2}} \left({e}^{−{a}} \right)+{Li}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$${Li}_{\mathrm{2}} \left(\mathrm{1}\right)=\zeta\left(\mathrm{1}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}},{li}_{\mathrm{2}} \left(−\mathrm{1}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$${f}\left(\mathrm{1}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+{Li}_{\mathrm{2}} \left(−{e}^{−{a}} \right)−{Li}_{\mathrm{2}} \left({e}^{−{a}} \right)+{aln}\left(\frac{\mathrm{1}−{e}^{−{a}} }{\mathrm{1}+{e}^{−{a}} }\right) \\ $$$$\Omega=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−{f}\left(\mathrm{1}\right)..\:{i}\:{will}\:{try}\:{if}\:{there}\:{is}\:{possibility} \\ $$$${to}\:{give}\:{Li}_{\mathrm{2}} \left(...\right)−{Li}_{\mathrm{2}} \left(...\right)\:{by}\:{elementry}\:{function} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com