All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 118710 by eric last updated on 19/Oct/20
Answered by mathmax by abdo last updated on 19/Oct/20
M=∫0∞lnx1+x3dx=∫01lnx1+x3dx+∫1∞lnx1+x3dx(→x=1t)=∫01lnx1+x3dx−∫01−lnt1+1t3×(−dtt2)=∫01lnx1+x3dx−∫01tlnt1+t3dtwehave∫01lnx1+x3dx=∫01lnx∑n=0∞(−1)nx3ndx=∑n=0∞(−1)n∫01x3nlnxdxUn=∫01x3nlnxdx=byparts[x3n+13n+1lnx]01−∫01x3n3n+1dx=−1(3n+1)2⇒∫01lnx1+x3dx=−∑n=0∞(−1)n(3n+1)2∫01xlnx1+x3dx=∫01xlnx∑n=0∞(−1)nx3ndx=∑n=0∞(−1)n∫01x3n+1lnxdxVn=∫01x3n+1lnxdx=[x3n+23n+2lnx]01−∫01x3n+13n+2dx=−1(3n+2)2⇒∫01xlnx1+x3dx=−∑n=0∞(−1)n(3n+2)2⇒M=−∑n=0∞(−1)n(3n+1)2+∑n=0∞(−1)n(3n+2)2restcalculusofthoseseries...becontinued...
Commented by mathdave last updated on 19/Oct/20
letmecomplettheremainingpartM=−∑∞n=0(−1)n(3n+1)+∑∞n=0(−1)n(3n+2)=−∑∞n=−∞(−1)n(3n+1)∵M=−∑∞n=−∞(−1)n(3n+1)=−(−π32limz→−131(2−1)!⋅∂∂z(cosec(πz)))M=π9limz→−13(−πcot(πz)cosec(πz))M=−π29cot(−π3)cosec(−π3)=−π29(23)=−2π227∵M=∫0∞lnx1+x3dx=−2π227notethis∑∞n=−∞(−1)n(ax+1)n=−πanlimz→−1a1(n−1)!⋅∂(n−1)∂z(n−1)cosec(πz)
Answered by mnjuly1970 last updated on 19/Oct/20
assume:f(a)=∫0∞xa1+x3dxgoal:M=f′(0)=?eulerreflectionformula...f(a)=x3=t13∫0∞t(a−23+1)−11+tdt=13β(a+13,1−a+13)=13Γ(a+13)Γ(1−a+13)=13∗πsin(π3+πa3)∴f′(a)=π3∗−π3cos(π3+πa3)sin2(π3+πa3)∴M=f′(0)=−π29∗1234=−2π227✓...m.n.1970...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com