Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118710 by eric last updated on 19/Oct/20

Answered by mathmax by abdo last updated on 19/Oct/20

M=∫_0 ^∞  ((lnx)/(1+x^3 ))dx =∫_0 ^1  ((lnx)/(1+x^3 ))dx +∫_1 ^∞  ((lnx)/(1+x^3 ))dx(→x=(1/t))  =∫_0 ^1  ((lnx)/(1+x^3 ))dx −∫_0 ^1  ((−lnt)/(1+(1/t^3 )))×(((−dt)/t^2 ))  =∫_0 ^1  ((lnx)/(1+x^3 ))dx−∫_0 ^1   ((tlnt)/(1+t^3 )) dt  we have  ∫_0 ^1  ((lnx)/(1+x^3 ))dx =∫_0 ^1 lnxΣ_(n=0) ^∞ (−1)^n x^(3n) dx =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 x^(3n) lnx dx  U_n =∫_0 ^1  x^(3n) lnxdx =_(byparts)    [(x^(3n+1) /(3n+1))lnx]_0 ^1 −∫_0 ^1 (x^(3n) /(3n+1))dx  =−(1/((3n+1)^2 )) ⇒∫_0 ^1  ((lnx)/(1+x^3 ))dx =−Σ_(n=0) ^∞ (((−1)^n )/((3n+1)^2 ))  ∫_0 ^1  ((xlnx)/(1+x^3 ))dx =∫_0 ^1 xlnxΣ_(n=0) ^∞ (−1)^n  x^(3n) dx=Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(3n+1) lnx dx  V_n =∫_0 ^1  x^(3n+1) lnx dx =[(x^(3n+2) /(3n+2))lnx]_0 ^1 −∫_0 ^1 (x^(3n+1) /(3n+2))dx  =−(1/((3n+2)^2 )) ⇒∫_0 ^1  ((xlnx)/(1+x^3 ))dx =−Σ_(n=0) ^∞ (((−1)^n )/((3n+2)^2 )) ⇒  M =−Σ_(n=0) ^∞  (((−1)^n )/((3n+1)^2 )) +Σ_(n=0) ^∞  (((−1)^n )/((3n+2)^2 ))  rest calculus of those  series ...be continued...

M=0lnx1+x3dx=01lnx1+x3dx+1lnx1+x3dx(x=1t)=01lnx1+x3dx01lnt1+1t3×(dtt2)=01lnx1+x3dx01tlnt1+t3dtwehave01lnx1+x3dx=01lnxn=0(1)nx3ndx=n=0(1)n01x3nlnxdxUn=01x3nlnxdx=byparts[x3n+13n+1lnx]0101x3n3n+1dx=1(3n+1)201lnx1+x3dx=n=0(1)n(3n+1)201xlnx1+x3dx=01xlnxn=0(1)nx3ndx=n=0(1)n01x3n+1lnxdxVn=01x3n+1lnxdx=[x3n+23n+2lnx]0101x3n+13n+2dx=1(3n+2)201xlnx1+x3dx=n=0(1)n(3n+2)2M=n=0(1)n(3n+1)2+n=0(1)n(3n+2)2restcalculusofthoseseries...becontinued...

Commented by mathdave last updated on 19/Oct/20

let me complet the remaining part  M=−Σ_(n=0) ^∞ (((−1)^n )/((3n+1)))+Σ_(n=0) ^∞ (((−1)^n )/((3n+2)))=−Σ_(n=−∞) ^∞ (((−1)^n )/((3n+1)))  ∵M=−Σ_(n=−∞) ^∞ (((−1)^n )/((3n+1)))=−(−(π/3^2 )lim_(z→−(1/3)) (1/((2−1)!))∙(∂/∂z)(cosec(πz)))  M=(π/9)lim_(z→−(1/3)) (−πcot(πz)cosec(πz))  M=−(π^2 /9)cot(−(π/3))cosec(−(π/3))=−(π^2 /9)((2/3))=−((2π^2 )/(27))  ∵M=∫_0 ^∞ ((lnx)/(1+x^3 ))dx=−((2π^2 )/(27))    note this  Σ_(n=−∞) ^∞ (((−1)^n )/((ax+1)^n ))=−(π/a^n )lim_(z→−(1/a)) (1/((n−1)!))∙(∂^((n−1)) /∂z^((n−1)) )cosec(πz)

letmecomplettheremainingpartM=n=0(1)n(3n+1)+n=0(1)n(3n+2)=n=(1)n(3n+1)M=n=(1)n(3n+1)=(π32limz131(21)!z(cosec(πz)))M=π9limz13(πcot(πz)cosec(πz))M=π29cot(π3)cosec(π3)=π29(23)=2π227M=0lnx1+x3dx=2π227notethisn=(1)n(ax+1)n=πanlimz1a1(n1)!(n1)z(n1)cosec(πz)

Answered by mnjuly1970 last updated on 19/Oct/20

 assume: f(a)=∫_0 ^( ∞) (x^a /(1+x^3 ))dx       goal : M=f ′(0)=?     euler reflection  formula...    f (a)=^(x^3 =t)  (1/3)∫_0 ^( ∞)  (t^((((a−2)/3)+1)−1) /(1+t))dt=(1/3)β(((a+1)/3) ,1−((a+1)/3))         =(1/3)Γ(((a+1)/3))Γ(1−((a+1)/3))      =(1/3)∗(π/(sin((π/3)+((πa)/3))))       ∴  f ′(a)=(π/3)∗((−(π/3)cos((π/3)+((πa)/3)))/(sin^2 ((π/3)+((πa)/3))))      ∴ M=f ′(0)=((−π^2 )/9)∗((1/2)/(3/4)) = −((2π^2 )/(27)) ✓                  ...m.n.1970...

assume:f(a)=0xa1+x3dxgoal:M=f(0)=?eulerreflectionformula...f(a)=x3=t130t(a23+1)11+tdt=13β(a+13,1a+13)=13Γ(a+13)Γ(1a+13)=13πsin(π3+πa3)f(a)=π3π3cos(π3+πa3)sin2(π3+πa3)M=f(0)=π291234=2π227...m.n.1970...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com