Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 118712 by 1549442205PVT last updated on 19/Oct/20

Prove the following inequalities:  1)(((n+1)/2))^n >n! for ∀n∈N^∗ ,n>1  2)∣sinnx∣≤n∣sinx∣ for ∀n∈N^∗

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequalities}: \\ $$ $$\left.\mathrm{1}\right)\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}} >\mathrm{n}!\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} ,\mathrm{n}>\mathrm{1} \\ $$ $$\left.\mathrm{2}\right)\mid\mathrm{sinnx}\mid\leqslant\mathrm{n}\mid\mathrm{sinx}\mid\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} \\ $$

Answered by Dwaipayan Shikari last updated on 19/Oct/20

((1+2+3+4+...n)/n)≥(1.2.3.4..n)^(1/n)   ((n(n+1))/(2n))≥(n!)^(1/n)   (((n+1)/2))^n ≥n!  take n>1  ((3/2))^2 ≥2!   (Which is true)  So  (((n+1)/2))^n >n!    (n>1)

$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...{n}}{{n}}\geqslant\left(\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}..{n}\right)^{\frac{\mathrm{1}}{{n}}} \\ $$ $$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}}\geqslant\left({n}!\right)^{\frac{\mathrm{1}}{{n}}} \\ $$ $$\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)^{{n}} \geqslant{n}! \\ $$ $${take}\:{n}>\mathrm{1} \\ $$ $$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \geqslant\mathrm{2}!\:\:\:\left({Which}\:{is}\:{true}\right) \\ $$ $${So} \\ $$ $$\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)^{{n}} >{n}!\:\:\:\:\left({n}>\mathrm{1}\right) \\ $$

Commented by1549442205PVT last updated on 20/Oct/20

Thank Sir.

$$\mathrm{Thank}\:\mathrm{Sir}. \\ $$

Answered by TANMAY PANACEA last updated on 19/Oct/20

2)applying logic  1≥∣sinnx∣≥0  and 1≥∣sinx∣≥0  but n≥n∣sinx∣≥0  so n∣sinx∣>∣sinnx∣

$$\left.\mathrm{2}\right){applying}\:{logic} \\ $$ $$\mathrm{1}\geqslant\mid{sinnx}\mid\geqslant\mathrm{0} \\ $$ $$\boldsymbol{{and}}\:\mathrm{1}\geqslant\mid{sinx}\mid\geqslant\mathrm{0} \\ $$ $${but}\:{n}\geqslant{n}\mid{sinx}\mid\geqslant\mathrm{0} \\ $$ $${so}\:{n}\mid{sinx}\mid>\mid{sinnx}\mid \\ $$ $$ \\ $$

Commented by1549442205PVT last updated on 19/Oct/20

I don′t see logic here,havn′t final  result n∣sinx∣≥∣sin(nx)∣

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{see}\:\mathrm{logic}\:\mathrm{here},\mathrm{havn}'\mathrm{t}\:\mathrm{final} \\ $$ $$\mathrm{result}\:\mathrm{n}\mid\mathrm{sinx}\mid\geqslant\mid\mathrm{sin}\left(\mathrm{nx}\right)\mid \\ $$

Commented byTANMAY PANACEA last updated on 19/Oct/20

ok sir  i am trying

$${ok}\:{sir}\:\:{i}\:{am}\:{trying} \\ $$

Commented by1549442205PVT last updated on 20/Oct/20

Thank Sir.

$$\mathrm{Thank}\:\mathrm{Sir}. \\ $$

Answered by mindispower last updated on 19/Oct/20

1)⇔nln(((n+1)/2))≥ln(Π_(k=1) ^n k)  Π_(k=1) ^n (k)≤(((Σ_(k=1) ^n k)/n))^n ,AM−GM  ⇒ln(Π_(k=1) ^n k)≤nln(((Σ_(k=1) ^n k)/n))=nln(((n+1)/2))

$$\left.\mathrm{1}\right)\Leftrightarrow{nln}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\geqslant{ln}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{k}\right) \\ $$ $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({k}\right)\leqslant\left(\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}}{{n}}\right)^{{n}} ,{AM}−{GM} \\ $$ $$\Rightarrow{ln}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{k}\right)\leqslant{nln}\left(\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}}{{n}}\right)={nln}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right) \\ $$ $$ \\ $$

Commented by1549442205PVT last updated on 20/Oct/20

Thank you sir

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by 1549442205PVT last updated on 20/Oct/20

We prove by the induction method  1−For n=2 we obtain the true inequality  2<9/4.Suppose that k!<(((k+1)/2))^k .Then  by the induction hypothesis (k+1)!=  k!(k+1)<(((k+1)/2))^k (k+1).If now we prove  that (((k+1)/2))^k (k+1)<(((k+2)/2))^(k+1) (1)  the theorem is proved because then  (k+1)!<(((k+1)/2))^k (k+1)<(((k+2)/2))^(k+1)   that is our inequality holds true for n=k+1  Inequality(1) can clearly be rewritten  as (((k+2)^(k+1) )/((k+1)^(k+1) ))>(2^(k+1) /2^k )or (1+(1/(k+1)))^(k+1) >2  But the binomial theorem yields  (1+(1/(k+1)))^(k+1) =1+(k+1)(1/(k+1))+...>2  so the inequality (1)holds and thus the   oriinal inequality is proved  2)The inequality is obviously true for  n=1.Assuming that ∣sinkx∣≤k∣sinx∣  ,we prove that ∣sin(k+1)x∣≤(k+1)∣sinx∣  Indeed,using the inequality∣coskx∣≤1  we have ∣sin(k+1)x∣=∣sinkx.cosx+sinxcoskx∣  ≤∣sinkx∣.∣cosx∣+∣sinx∣∣coskx∣≤  ∣sinkx∣+∣sinx∣≤k∣sinx∣+∣sinx∣  =(k+1)∣sinx∣ which shows the required  is true.The proof completed.

$$\mathrm{We}\:\mathrm{prove}\:\mathrm{by}\:\mathrm{the}\:\mathrm{induction}\:\mathrm{method} \\ $$ $$\mathrm{1}−\mathrm{For}\:\mathrm{n}=\mathrm{2}\:\mathrm{we}\:\mathrm{obtain}\:\mathrm{the}\:\mathrm{true}\:\mathrm{inequality} \\ $$ $$\mathrm{2}<\mathrm{9}/\mathrm{4}.\mathrm{Suppose}\:\mathrm{that}\:\mathrm{k}!<\left(\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{k}} .\mathrm{Then} \\ $$ $$\mathrm{by}\:\mathrm{the}\:\mathrm{induction}\:\mathrm{hypothesis}\:\left(\mathrm{k}+\mathrm{1}\right)!= \\ $$ $$\mathrm{k}!\left(\mathrm{k}+\mathrm{1}\right)<\left(\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{k}} \left(\mathrm{k}+\mathrm{1}\right).\mathrm{If}\:\mathrm{now}\:\mathrm{we}\:\mathrm{prove} \\ $$ $$\mathrm{that}\:\left(\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{k}} \left(\mathrm{k}+\mathrm{1}\right)<\left(\frac{\mathrm{k}+\mathrm{2}}{\mathrm{2}}\right)^{\mathrm{k}+\mathrm{1}} \left(\mathrm{1}\right) \\ $$ $$\mathrm{the}\:\mathrm{theorem}\:\mathrm{is}\:\mathrm{proved}\:\mathrm{because}\:\mathrm{then} \\ $$ $$\left(\mathrm{k}+\mathrm{1}\right)!<\left(\frac{\mathrm{k}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{k}} \left(\mathrm{k}+\mathrm{1}\right)<\left(\frac{\mathrm{k}+\mathrm{2}}{\mathrm{2}}\right)^{\mathrm{k}+\mathrm{1}} \\ $$ $$\mathrm{that}\:\mathrm{is}\:\mathrm{our}\:\mathrm{inequality}\:\mathrm{holds}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$ $$\mathrm{Inequality}\left(\mathrm{1}\right)\:\mathrm{can}\:\mathrm{clearly}\:\mathrm{be}\:\mathrm{rewritten} \\ $$ $$\mathrm{as}\:\frac{\left(\mathrm{k}+\mathrm{2}\right)^{\mathrm{k}+\mathrm{1}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} }>\frac{\mathrm{2}^{\mathrm{k}+\mathrm{1}} }{\mathrm{2}^{\mathrm{k}} }\mathrm{or}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right)^{\mathrm{k}+\mathrm{1}} >\mathrm{2} \\ $$ $$\mathrm{But}\:\mathrm{the}\:\mathrm{binomial}\:\mathrm{theorem}\:\mathrm{yields} \\ $$ $$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right)^{\mathrm{k}+\mathrm{1}} =\mathrm{1}+\left(\mathrm{k}+\mathrm{1}\right)\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}+...>\mathrm{2} \\ $$ $$\mathrm{so}\:\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\mathrm{holds}\:\mathrm{and}\:\mathrm{thus}\:\mathrm{the}\: \\ $$ $$\mathrm{oriinal}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{proved} \\ $$ $$\left.\mathrm{2}\right)\mathrm{The}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{obviously}\:\mathrm{true}\:\mathrm{for} \\ $$ $$\mathrm{n}=\mathrm{1}.\mathrm{Assuming}\:\mathrm{that}\:\mid\mathrm{sinkx}\mid\leqslant\mathrm{k}\mid\mathrm{sinx}\mid \\ $$ $$,\mathrm{we}\:\mathrm{prove}\:\mathrm{that}\:\mid\mathrm{sin}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{x}\mid\leqslant\left(\mathrm{k}+\mathrm{1}\right)\mid\mathrm{sinx}\mid \\ $$ $$\mathrm{Indeed},\mathrm{using}\:\mathrm{the}\:\mathrm{inequality}\mid\mathrm{coskx}\mid\leqslant\mathrm{1} \\ $$ $$\mathrm{we}\:\mathrm{have}\:\mid\mathrm{sin}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{x}\mid=\mid\mathrm{sinkx}.\mathrm{cosx}+\mathrm{sinxcoskx}\mid \\ $$ $$\leqslant\mid\mathrm{sinkx}\mid.\mid\mathrm{cosx}\mid+\mid\mathrm{sinx}\mid\mid\mathrm{coskx}\mid\leqslant \\ $$ $$\mid\mathrm{sinkx}\mid+\mid\mathrm{sinx}\mid\leqslant\mathrm{k}\mid\mathrm{sinx}\mid+\mid\mathrm{sinx}\mid \\ $$ $$=\left(\mathrm{k}+\mathrm{1}\right)\mid\mathrm{sinx}\mid\:\mathrm{which}\:\mathrm{shows}\:\mathrm{the}\:\mathrm{required} \\ $$ $$\mathrm{is}\:\mathrm{true}.\mathrm{The}\:\mathrm{proof}\:\mathrm{completed}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com