All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 118768 by mathdave last updated on 19/Oct/20
Answered by mindispower last updated on 23/Oct/20
∑nm=0eimx=1−(eix)n+11−eix=einx2(e−i(n+1)x2−ei(n+1)x2)e−ix2−eix2=einx2.sin(n+12x)sin(x2)⇒sin(2n+12x)sin(x2)=e−inx∑2nm=0eimx∫−∞∞eikx1+x2dx,k⩾0CR={Reia,a∈[0,π]}∫CReikx1+x2dx=∫−∞∞eikx1+x2dx+∫0πiRe−ksin(x)dx1+R2e2ix=2iπ.e−k2i=πek,⇒∑m⩽2nπe∣m−n∣=∑m⩽nπen−m+∑m>nπem−n=πen(1−e(n+1)1−e)+πen(e−(n+1)(1−e−(n)1−e−1))limn→0=−πe1−e+πe−1.11−e−=πe−1(e+1)=πe122+e−12212(e12−e−12)=πcoth(12)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com