Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 118768 by mathdave last updated on 19/Oct/20

Answered by mindispower last updated on 23/Oct/20

Σ_(m=0) ^n e^(imx) =((1−(e^(ix) )^(n+1) )/(1−e^(ix) ))=((e^(i((nx)/2)) (e^(−i(((n+1)x)/2)) −e^(i(((n+1)x)/2)) ))/(e^(−i(x/2)) −e^(i(x/2)) ))  =e^(i((nx)/2)) .((sin(((n+1)/2)x))/(sin((x/2))))  ⇒((sin(((2n+1)/2)x))/(sin((x/2))))=e^(−inx) Σ_(m=0) ^(2n) e^(imx)   ∫_(−∞) ^∞ ((e^(ikx)  )/(1+x^2 ))dx ,k≥0  C_R ={Re^(ia) ,a∈[0,π]}  ∫_C_R  (e^(ikx) /(1+x^2 ))dx=∫_(−∞) ^∞ (e^(ikx) /(1+x^2 ))dx+∫_0 ^π ((iRe^(−ksin(x)) dx)/(1+R^2 e^(2ix) ))  =2iπ.(e^(−k) /(2i))=(π/e^k ),  ⇒Σ_(m≤2n) (π/e^(∣m−n∣) )=Σ_(m≤n) (π/e^(n−m) )+Σ_(m>n) (π/e^(m−n) )  =(π/e^n )(((1−e^((n+1)) )/(1−e)))+πe^n (e^(−(n+1)) (((1−e^(−(n)) )/(1−e^(−1) ))))  lim n→0  =−((πe)/(1−e))+πe^(−1) .(1/(1−e^− ))  =(π/(e−1))(e+1)=π(((e^(1/2) /2)+(e^(−(1/2)) /2) )/((1/2)(e^(1/2) −e^(−(1/2)) )))=πcoth((1/2))

nm=0eimx=1(eix)n+11eix=einx2(ei(n+1)x2ei(n+1)x2)eix2eix2=einx2.sin(n+12x)sin(x2)sin(2n+12x)sin(x2)=einx2nm=0eimxeikx1+x2dx,k0CR={Reia,a[0,π]}CReikx1+x2dx=eikx1+x2dx+0πiReksin(x)dx1+R2e2ix=2iπ.ek2i=πek,m2nπemn=mnπenm+m>nπemn=πen(1e(n+1)1e)+πen(e(n+1)(1e(n)1e1))limn0=πe1e+πe1.11e=πe1(e+1)=πe122+e12212(e12e12)=πcoth(12)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com