Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 11889 by murtaza8 last updated on 04/Apr/17

The number of ways in which 8   different flowers can be strung to  form a garland so that 4 particular  flowers are never separated is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{in}\:\mathrm{which}\:\mathrm{8}\: \\ $$$$\mathrm{different}\:\mathrm{flowers}\:\mathrm{can}\:\mathrm{be}\:\mathrm{strung}\:\mathrm{to} \\ $$$$\mathrm{form}\:\mathrm{a}\:\mathrm{garland}\:\mathrm{so}\:\mathrm{that}\:\mathrm{4}\:\mathrm{particular} \\ $$$$\mathrm{flowers}\:\mathrm{are}\:\mathrm{never}\:\mathrm{separated}\:\mathrm{is} \\ $$

Answered by ajfour last updated on 04/Apr/17

(((5−1)!)/2)(4!)

$$\frac{\left(\mathrm{5}−\mathrm{1}\right)!}{\mathrm{2}}\left(\mathrm{4}!\right) \\ $$

Commented by ajfour last updated on 04/Apr/17

Commented by mrW1 last updated on 04/Apr/17

Can you please explain your solution?  I think he meant that 4 special flowers  should always chosen together.

$${Can}\:{you}\:{please}\:{explain}\:{your}\:{solution}? \\ $$$${I}\:{think}\:{he}\:{meant}\:{that}\:\mathrm{4}\:{special}\:{flowers} \\ $$$${should}\:{always}\:{chosen}\:{together}. \\ $$

Commented by mrW1 last updated on 04/Apr/17

if we treat these 4 flowers as one super flower.  5 flowers form the garland, there are  5! way. To replace this super flower  with our 4 always−together−flowers,  there are 4 ways. So the solution is  5!4!=2880

$${if}\:{we}\:{treat}\:{these}\:\mathrm{4}\:{flowers}\:{as}\:{one}\:{super}\:{flower}. \\ $$$$\mathrm{5}\:{flowers}\:{form}\:{the}\:{garland},\:{there}\:{are} \\ $$$$\mathrm{5}!\:{way}.\:{To}\:{replace}\:{this}\:{super}\:{flower} \\ $$$${with}\:{our}\:\mathrm{4}\:{always}−{together}−{flowers}, \\ $$$${there}\:{are}\:\mathrm{4}\:{ways}.\:{So}\:{the}\:{solution}\:{is} \\ $$$$\mathrm{5}!\mathrm{4}!=\mathrm{2880} \\ $$

Commented by mrW1 last updated on 04/Apr/17

Sorry, I understand that the garland  should consist of 4 flowers.

$${Sorry},\:{I}\:{understand}\:{that}\:{the}\:{garland} \\ $$$${should}\:{consist}\:{of}\:\mathrm{4}\:{flowers}. \\ $$

Commented by ajfour last updated on 04/Apr/17

but those four can be arranged  among  themselves..  for 4+(1group)=5 flowers  have a cicular permutation of  (((5−1)!)/2) . And the four not to be  separated should,i believe, have a   permutation of  4! .

$${but}\:{those}\:{four}\:{can}\:{be}\:{arranged} \\ $$$${among}\:\:{themselves}.. \\ $$$${for}\:\mathrm{4}+\left(\mathrm{1}{group}\right)=\mathrm{5}\:{flowers} \\ $$$${have}\:{a}\:{cicular}\:{permutation}\:{of} \\ $$$$\frac{\left(\mathrm{5}−\mathrm{1}\right)!}{\mathrm{2}}\:.\:{And}\:{the}\:{four}\:{not}\:{to}\:{be} \\ $$$${separated}\:{should},{i}\:{believe},\:{have}\:{a}\: \\ $$$${permutation}\:{of}\:\:\mathrm{4}!\:. \\ $$

Commented by ajfour last updated on 04/Apr/17

if there are 3 different flowers   to form a garland we have  (((3−1)!)/2) =1 way and that′s true.

$${if}\:{there}\:{are}\:\mathrm{3}\:{different}\:{flowers}\: \\ $$$${to}\:{form}\:{a}\:{garland}\:{we}\:{have} \\ $$$$\frac{\left(\mathrm{3}−\mathrm{1}\right)!}{\mathrm{2}}\:=\mathrm{1}\:{way}\:{and}\:{that}'{s}\:{true}. \\ $$

Commented by prakash jain last updated on 04/Apr/17

If we need to arrange n object in a  circular permutation than number  of arragements are (n−1)! like  seating on a round table.  ABC, CAB, BCA are same but  ACB is different from ABC.  For arrangements that can turned  upside down like a garland   so clockwise and anticlockwise  are equivalent,  number of permutation are (((n−1)!)/2)

$$\mathrm{If}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{arrange}\:{n}\:\mathrm{object}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{circular}\:\mathrm{permutation}\:\mathrm{than}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{arragements}\:\mathrm{are}\:\left({n}−\mathrm{1}\right)!\:\mathrm{like} \\ $$$$\mathrm{seating}\:\mathrm{on}\:\mathrm{a}\:\mathrm{round}\:\mathrm{table}. \\ $$$$\mathrm{ABC},\:\mathrm{CAB},\:\mathrm{BCA}\:\mathrm{are}\:\mathrm{same}\:\mathrm{but} \\ $$$$\mathrm{ACB}\:\mathrm{is}\:\mathrm{different}\:\mathrm{from}\:\mathrm{ABC}. \\ $$$$\mathrm{For}\:\mathrm{arrangements}\:\mathrm{that}\:\mathrm{can}\:\mathrm{turned} \\ $$$$\mathrm{upside}\:\mathrm{down}\:\mathrm{like}\:\mathrm{a}\:\mathrm{garland}\: \\ $$$$\mathrm{so}\:\mathrm{clockwise}\:\mathrm{and}\:\mathrm{anticlockwise} \\ $$$$\mathrm{are}\:\mathrm{equivalent}, \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{permutation}\:\mathrm{are}\:\frac{\left(\mathrm{n}−\mathrm{1}\right)!}{\mathrm{2}} \\ $$

Commented by mrW1 last updated on 06/Apr/17

thanks!

$${thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com