Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 118899 by bobhans last updated on 20/Oct/20

 sin ((π/(14)))sin (((2π)/(14)))sin (((3π)/(14)))...sin (((6π)/(14)))=?

$$\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{14}}\right)\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{14}}\right)\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{14}}\right)...\mathrm{sin}\:\left(\frac{\mathrm{6}\pi}{\mathrm{14}}\right)=? \\ $$

Answered by TANMAY PANACEA last updated on 20/Oct/20

taking help from S.L Loney Trigonometry  2^((n−1)/2) sin(((2π)/(2n)))sin(((4π)/(2n)))sin(((6π)/(2n)))...sin(((n−2)/(2n)))π=(√n)   p=sin(((2π)/(28)))sin(((4π)/(28)))sin(((6π)/(28)))sin(((8π)/(28)))sin(((10π)/(28)))sin(((12π)/(28)))  so comparing  2n=28→n=14  required answer=((√n)/2^((n−1)/2) )  =((√(14))/2^((13)/2) )=(((√7) ×(√2))/(2^6 ×(√2)))=((√7)/2^6 ) Answer

$${taking}\:{help}\:{from}\:{S}.{L}\:{Loney}\:{Trigonometry} \\ $$$$\mathrm{2}^{\frac{{n}−\mathrm{1}}{\mathrm{2}}} {sin}\left(\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\right){sin}\left(\frac{\mathrm{4}\pi}{\mathrm{2}{n}}\right){sin}\left(\frac{\mathrm{6}\pi}{\mathrm{2}{n}}\right)...{sin}\left(\frac{{n}−\mathrm{2}}{\mathrm{2}{n}}\right)\pi=\sqrt{{n}}\: \\ $$$${p}={sin}\left(\frac{\mathrm{2}\pi}{\mathrm{28}}\right){sin}\left(\frac{\mathrm{4}\pi}{\mathrm{28}}\right){sin}\left(\frac{\mathrm{6}\pi}{\mathrm{28}}\right){sin}\left(\frac{\mathrm{8}\pi}{\mathrm{28}}\right){sin}\left(\frac{\mathrm{10}\pi}{\mathrm{28}}\right){sin}\left(\frac{\mathrm{12}\pi}{\mathrm{28}}\right) \\ $$$${so}\:{comparing} \\ $$$$\mathrm{2}{n}=\mathrm{28}\rightarrow{n}=\mathrm{14} \\ $$$${required}\:{answer}=\frac{\sqrt{{n}}}{\mathrm{2}^{\frac{{n}−\mathrm{1}}{\mathrm{2}}} } \\ $$$$=\frac{\sqrt{\mathrm{14}}}{\mathrm{2}^{\frac{\mathrm{13}}{\mathrm{2}}} }=\frac{\sqrt{\mathrm{7}}\:×\sqrt{\mathrm{2}}}{\mathrm{2}^{\mathrm{6}} ×\sqrt{\mathrm{2}}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{2}^{\mathrm{6}} }\:{Answer} \\ $$

Commented by TANMAY PANACEA last updated on 20/Oct/20

Answered by mindispower last updated on 20/Oct/20

let z^(14) −1=0  ⇒z^(14) −1=Π_(k=0) ^(13) (X−e^((2ikπ)/(14)) )⇒Π_(k=1) ^(13) (1−e^((2ikπ)/(14)) )=14  (1−e^((2ikπ)/(14)) )=e^((ikπ)/(14)) (e^((−ikπ)/(14)) −e^((ikπ)/(14)) )  =−2isin(((kπ)/(14)))e^(ik(π/(14)))   ⇒Π_(k=1) ^(13) (−2isin(((kπ)/(14)))).e^(i(π/(14))Σk) )=14  ⇒(−2i)^(13) Π_(k=1) ^6 sin(((kπ)/(14))).Π_(k=7) ^(13) sin(((kπ)/(14)))e^(i(π/(14))(7.13)) =14  ⇒(−2)^(13) .i.Π_(k=1) ^6 sin(((kπ)/(14))).Π_(k=1) ^7 sin((((14−k)π)/(14)))e^((1/2)13iπ) =14  sin(π−x)=sin(x),sin(((7π)/(14)))=sin((π/2))=1,e^((13iπ)/2) =i  ⇒(2)^(13) [Π_(k=1) ^6 sin(((kπ)/(14)))]^2 =14  ⇒Π_(k=1) ^6 sin(((kπ)/(14)))=((√7)/2^6 )

$${let}\:{z}^{\mathrm{14}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{z}^{\mathrm{14}} −\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{13}} {\prod}}\left({X}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{14}}} \right)\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\prod}}\left(\mathrm{1}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{14}}} \right)=\mathrm{14} \\ $$$$\left(\mathrm{1}−{e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{14}}} \right)={e}^{\frac{{ik}\pi}{\mathrm{14}}} \left({e}^{\frac{−{ik}\pi}{\mathrm{14}}} −{e}^{\frac{{ik}\pi}{\mathrm{14}}} \right) \\ $$$$=−\mathrm{2}{isin}\left(\frac{{k}\pi}{\mathrm{14}}\right){e}^{{ik}\frac{\pi}{\mathrm{14}}} \\ $$$$\left.\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\prod}}\left(−\mathrm{2}{isin}\left(\frac{{k}\pi}{\mathrm{14}}\right)\right).{e}^{{i}\frac{\pi}{\mathrm{14}}\Sigma{k}} \right)=\mathrm{14} \\ $$$$\Rightarrow\left(−\mathrm{2}{i}\right)^{\mathrm{13}} \underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{14}}\right).\underset{{k}=\mathrm{7}} {\overset{\mathrm{13}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{14}}\right){e}^{{i}\frac{\pi}{\mathrm{14}}\left(\mathrm{7}.\mathrm{13}\right)} =\mathrm{14} \\ $$$$\Rightarrow\left(−\mathrm{2}\right)^{\mathrm{13}} .{i}.\underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{14}}\right).\underset{{k}=\mathrm{1}} {\overset{\mathrm{7}} {\prod}}{sin}\left(\frac{\left(\mathrm{14}−{k}\right)\pi}{\mathrm{14}}\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{13}{i}\pi} =\mathrm{14} \\ $$$${sin}\left(\pi−{x}\right)={sin}\left({x}\right),{sin}\left(\frac{\mathrm{7}\pi}{\mathrm{14}}\right)={sin}\left(\frac{\pi}{\mathrm{2}}\right)=\mathrm{1},{e}^{\frac{\mathrm{13}{i}\pi}{\mathrm{2}}} ={i} \\ $$$$\Rightarrow\left(\mathrm{2}\right)^{\mathrm{13}} \left[\underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{14}}\right)\right]^{\mathrm{2}} =\mathrm{14} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{6}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{14}}\right)=\frac{\sqrt{\mathrm{7}}}{\mathrm{2}^{\mathrm{6}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by TANMAY PANACEA last updated on 20/Oct/20

excellent sif

$${excellent}\:{sif} \\ $$

Commented by TANMAY PANACEA last updated on 20/Oct/20

sir

$${sir} \\ $$

Commented by mindispower last updated on 20/Oct/20

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com