All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 118924 by mnjuly1970 last updated on 21/Oct/20
...advancedcalculus...provethat::∑∞n=1(−1)nHnn2=∫01ln(1−x)ln(1+x)xdxnote::Hn=∑nk=11ktherefore:∑∞n=1(−1)nHnn2=−58ζ(3)✓..m.n.july.1970...
Answered by mindispower last updated on 21/Oct/20
∫01xn−1ln(1−x)dx=−∫01xn−1∑k⩾1xkkdx=−∑k1k∫01xn+k−1dx=−∑k⩾11(n+k)k=−∑k⩾11n(1k−1n+k)=−1n∑k⩽n1k=−Hnn⇒∫01xn−1ln(1−x)dx=−Hnn1n∫xn−1ln(1−x)dx=−Hnn2⇒Σ(−1)n−1n∫01xn−1ln(1−x)dx=∑n⩾1(−1)nHnn2⇒∫01(1xΣ(−1)n−1xnn)ln(1−x)dx=∑n⩾1(−1)nHnn2∑n⩾1(−1)n−1xnn=ln(1+x)⇔∫01ln(1+x)ln(1−x)xdx=Σ(−1)nHnn2∫01ln(1+x)ln(1−x)xdxdoneinyouranswer
Commented by mnjuly1970 last updated on 21/Oct/20
bravobravomrpowergratefulsir...
Commented by mindispower last updated on 21/Oct/20
withepleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com