Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118934 by Riteshgoyal last updated on 20/Oct/20

    I=∫_0 ^∞  ((lnx)/(x^2 +2x+4)) dx  put x+1=(√3) tanθ  I=∫_0 ^(π/2)  ((ln((√3) tanθ−1))/(3(sec^2 θ))) (√3) sec^2 θdθ  I=(1/( (√3)))∫_0 ^(π/2)   ln((√3)tanθ−1) dθ  I=(1/( (√3)))∫_0 ^(π/2) ln((√3)sinθ−cosθ)−lncosθ dθ  I=(1/( (√3)))∫_0 ^(π/2) ln(sin(θ−(π/6))+ln2−lncosθ dθ      A=∫_(−2) ^6 ∣g(x)∣ dx  ⇒let g(p)=0⇒ f(0)=p=2  A=∫_(−2) ^2 −g(x) dx+∫_2 ^6 g(x) dx  ⇒put x=f(t)  A=∫_(−1) ^0 −tf′(t) dt+∫_0 ^1 t f(t) dt  A=∫_(−1) ^0 −3t^3 −3t dt+∫_0 ^1 3t^3 +3t dt  A=2(((3t^4 )/4)+((3t^2 )/2))_0 ^1 =(9/2)  lnx=(1/x)⇒xlnx=1(let x=α)  ∫_1 ^α (1/x)−lnx dx=∫_α ^a lnx−(1/x) dx  ⇒lnx−xlnx+x]_1 ^α =xlnx−x−lnx]_α ^a   ⇒lnα−1+α−1=alna−a−lna−1+α                                                     +lnα  ⇒alna−a−lna=−1  ⇒alna−lna=a−1⇒a=e      s(t)=(1/2)∣OA^→ ×OB^→ ∣  s(t)=(1/2)∣(2,2,1)×(t,1,t+1)∣  s(t)=(1/2)∣(2t+1),(−2−t),(2−2t)∣  f(x)=(1/4)∫_0 ^x (2t+1)^2 +(t+2)^2 +(2−2t)^2  dt  f(x)=(1/4)∫_0 ^x 9t^2 +9 dt=((3x^3 +9x)/4)  A=(1/4)∫_0 ^6 (3x^3 +9x)dx=((3x^4 +18x^2 )/(16))]_0 ^6   A=((3.6^3 (6+1))/(16))=((567)/2)

I=0lnxx2+2x+4dxputx+1=3tanθI=0π/2ln(3tanθ1)3(sec2θ)3sec2θdθI=130π/2ln(3tanθ1)dθI=130π/2ln(3sinθcosθ)lncosθdθI=130π/2ln(sin(θπ6)+ln2lncosθdθA=26g(x)dxletg(p)=0f(0)=p=2A=22g(x)dx+26g(x)dxputx=f(t)A=10tf(t)dt+01tf(t)dtA=103t33tdt+013t3+3tdtA=2(3t44+3t22)01=92lnx=1xxlnx=1(letx=α)1α1xlnxdx=αalnx1xdxlnxxlnx+x]1α=xlnxxlnx]αalnα1+α1=alnaalna1+α+lnαalnaalna=1alnalna=a1a=es(t)=12OA×OBs(t)=12(2,2,1)×(t,1,t+1)s(t)=12(2t+1),(2t),(22t)f(x)=140x(2t+1)2+(t+2)2+(22t)2dtf(x)=140x9t2+9dt=3x3+9x4A=1406(3x3+9x)dx=3x4+18x216]06A=3.63(6+1)16=5672

Terms of Service

Privacy Policy

Contact: info@tinkutara.com